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ABSTRACT

This report recreates the Zeeman experiment, 
performed first by Pieter Zeeman in 1887. The ex-
periment, which won a Nobel Prize with the con-
tribitions of Hendrik Lorentz, relates the splitting of 
emission spectra by a powerful electromagnet with 
the quantum properties of the electron. This experi-
ment was performed at the incipience of the discov-
ery of the atomic structure and was revolutionary in 
its derivation of the Bohr magneton μ0, which encap-
sulates the quantum numbers of angular and orbital 
momenta of the electron in relationship to its emis-
sion of light. 

This report, in multiple steps, derives the Bohr 
magneton using two different polarizations for light 
in the area of 546 nm. Using an electromagnet and a 
Fabry-Perot interferometer, emission spectra are cre-
ated and split under the conditions of the Zeeman ef-
fect and related to the universal constant of the Bohr 
magneton.

The 0 and 90° polarizations (known as π and σ 
polarization) filter out different transmissions of light 
and allow for two different techniques to calculate 
the magneton. For each polarization, we calculat-
ed values of μ0 = (9.662 ± 0.135) × 10-24 J/T and μ0 = 
(8.673 ± 0.369) × 10-24 J/T, respectively. This is in signif-
icant agreement with the reference value provided by 
the NIST (see Appendix), with one-tailed p-values of 
13 and 25.4%, respectively.
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A schematic of the optical rail used to investigate 
the Zeeman effect and derive the Bohr magneton.



Introduction

In 1902, Pieter Zeeman won the Nobel Prize for 
research conducted alongside Hendrik Lorentz. The 
research that won them the prize involved a simple idea: 
measure the effect of magnetism on light. The results, 
however, wholly transformed the contemporary under-
standing of light emission and laid groundwork for the 
discovery of the electron.

In 1886, however, Zeeman's goals were quite a bit 
simpler. Over de invloed eener magnetisatie op den aard 
van het door een stof uitgezonden licht, his paper on the 
'effect of magnetism on a light-emitting substance,' de-
scribes his intuitions on the subject (Zeeman, 1887). In 
Maxwell's Collected Works vol. 2, he describes testing the 
effects of a powerful magnet on a flame to no apparent 
results. Zeeman reasoned that the application of modern 
(and much higher-resolution) spectroscopy could pro-
duce different results.

Zeeman witnessed a phenomena which required 
the efforts of another, more experienced physicist to de-
scribe -- at least mathematically. Lorentz was in the pro-
cess of developing theories on electromagnetic radiation, 
including minute oscillating particles which he described 
as negatively charged and responsible for the emission of 
light. Thomson would describe these oscillating particles 
in 1904 as negatively-charged 'corpuscles,' surrounding a 
sphere of positive charge. Later, physicists, would prefer 
the term 'electron.'

This is all to say that Zeeman's experiment proved 
crucial in building the evidence to support theories for 
electrons, electron spin and quantum particles. While 
Zeeman's experiment purely concerned the effects of a 
magnet on the spectral lines of Sodium, modern under-
standing explains in greater detail the quantum interac-
tions between paired electrons.

Take the example of Mercury. Subject to electri-
cal discharge, just one of its 6s electrons is excited to a 
higher state, 7s. As the electron de-excitates, it releases 
two successive photons (packets of light) until it reaches 
its original equilibrium state:

The transition we are interested occurs in one 
millionth of a second and, in some cases, as  . 

When this single case of 8 occurs, a bright burst of green 
light is emitted at a wavelength of 546.07 nanometers.

As Figure One illustrates, we can pass this light 
through an interference filter to eliminate the light from 
other emissions in the visual spectrum. From here, we 
can use a spectrometer to create interference lines.

The Fabry-Perot interferometer is a high-resolution 
spectroscope which takes advantage of a millmetric gap 
between two highly reflective panels to produce interfer-
ence fringes of increasing order. Each of these individual 
fringes, as shown in Figure Two (a), has an associated 
angle θ with respect to the optical axis (Brown, 2019).

As these rays travel over a horizontal distance paral-
lel to the optical axis, their vertical position increases as 
a function of their angle. We use a camera to capture an 
image of the interference pattern, with a fixed resolution. 
In our case, with a focal length of 135 millimeters, every 
pixel corresponds to a 9×9 micrometer square. Figure 
Two (b) is an image of these lines where, as a result of 
the radial symmetry of the incident and transmitted 
light, a ringed interference pattern occurs.

The geometries associated with the Fabry-Perot are 
described in greater detail in (Brown, 2019), however 
we briefly mention that the slope of the squared angle 
equals the emission wavelength divided by the mirror 

separation, 6.499 mm, such that .
The introduction of a magnetic field drastically 

changes the situation. The comprehensive explanation 
of the Zeeman effect involves quantum mechanical 
properties of spin S, orbital (angular) momentum L and 

(6s)·(6s)  (6s)·(7s)   (6s)·(6p)  (6s)·(6s){

transition in 10-9 seconds

λ = 546.07 nm

Pieter Zeeman's photograph of the splitting of interference 
lines under the effect of magnetism

Under no 
magnetic 
influence 
(B = 0)

Under a non-zero 
magnetic 
influence 
(B > 0)

Zeeman's exploration of emission splitting used a Sodium 
lamp and a Fabry-Perot interferometer. The upper lines are the the 
D-lines of Sodium which are then split by a magnetic field, resulting 
in the multiple lines seen in the bottom half of the image.



λ = 546.07 nm

Figure One: Optical Interference Filter

The purpose of the interference filter is to allow light in a narrow 
band of wavelengths to pass, while other light is occluded. This filter 
allows a percentage of light transmission (%T) up to about 63% 
around 547 nanometers. Our target wavelength is 546.07 nm. 

The transmission dies off quickly, with less than 10% transmis-
sion for wavelengths outside a domain of about 537 to 554 nm.

(Brown, 2019)
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Figure Two: The Fabry-Perot Interferometer
(a) The mirrors of the 
Fabry-Perot

(b) Interference pattern (B=0)

The Fabry-Perot inter-
ferometer is unique in that 
its total path length for each 
order is proportional the number of reflections made within the 
spectrometer. Each subsequent reflection produces another fringe at 
a different angle; accumulation results in regularly spaced circular 
fringes spaced like that of (b). Note that this image of the fringes are 
with the electromagnet turned off (B=0). (Brown, 2019)

center

their sum, the total angular momentum J. Our descrip-
tion above of the transition   uses the standard 
notation for their quantum properties. In particular,

 where the angular momentum L is quantized by 
 and .

When there is no magnetic field applied, the change 
in orbital increases the total angular momentum J from 
1 to 2. With a magnetic field applied, however, this 
transition splits into multiple possible transitions. These 
are intrinsically related to the initial and final angular 
momentum numbers in J; as in the subdivided line mJ 
corresponds thusly:

So, we can see that the initial state is subdivided 
into three possible states while the final state is subdivid-
ed into five possible states. 

Under the rules of quantum mechanics, howev-
er, the maximum transition magnitude is |1| such that 

. Moreover, these transitions occur linearly 
polarized, in directions perpendicular to one another. 
The set which we dub π corresponds to in 
which emission is polarized along the direction of the 
magnetic field (horizontally with respect to our optical 
rail). Conversely, the set σ corresponds to  
in which the emission is polarized perpendicular to the 
magnetic field (and vertically to our optical rail). Figures 
Three (a) and (b) illustrate these transitions and their 
relative intensities to one another. 

The energy of the emission is proportional to the 
number mJ, wherein  (Brown, 2019).
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Figure Three: Transitions in Mercury   with a 
magnetic field applied

(a) π polarization: (b) σ polarization:

Each of the π and σ polarizations correspond to a different 
change in the quantum number mj. If this number does not change 
-- as in  -- the π polarization occurs parallel to the magnetic 
field. The perpendicular σ polarization is true for .

These transitions have differing intensities relative to one anoth-
er, and the separation between their peaks can be quantified as δE, 
used to calculate the Bohr magneton.
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The unitless constant g is quantified by 

, wherein the 
variables J, S and L are those quantum numbers associat-
ed with the initial and final states. The initial state has a 

value  whereas the final state has 

a value  . 
The Bohr magneton μ0 is a physical constant of the 

universe. It represents the magnetic moment of the elec-
tron, which includes its orbital and spin momenta; and 
thusly it can be represented as  involving the 
fundamental charge e, the Planck constant , the mass 
of the electron me and the speed of light c. These values 
are require understanding of quantum mechanics which 
hadn't been developed in Zeeman's time. In collabora-
tion with Lorentz, however, the derivation of this con-
stant stands as the first quantification of the properties of 
the electron (Brown, 2019). 

In order to apply a magnetic field and polarize the 
resultant light, we need to add two more elements to the 
optical rail. The first is, of course, the electromagnet with 
an attached Hall probe to measure the correspondent 
magnetic field. The second is a polarizing lens, which 
can be changed to 0° or 90° polarizations. The entire 
assembly is depicted in Figure Four.

The goals of this lab report are twofold.
First, I will verify the relationship between the an-

gle θ and wavelength and the spacing of the Fabry-Perot 
interferometer. We will calculate at zero magnetic field 

strength the slope of θ2 to confirm that .
Second, for each the π and σ polarizations, I will 

calculate the Bohr magneton from the energy spacings 
between the interference lines, as shown in Figure Three. 

This paper will reference these values to accepted 
theoretical values and produce a p-value to reflect the 
certainty in our results.

This report is organized in the following sections, 
including relevant data and bibliographical information 
placed in the Appendix:

Abstract ... 1
Introduction ... 2

Methods & Procedures ... 5
Error Analysis ... 8 

Results ... 9 
Discussion ...  11

Appendix ... 12 
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Figure Four: Full diagram of the Optical Rail

Starting from the top, this diagram illustrates the light path as 
it passes through each of the optical components on the rail. The 
discharge tube emits multiple wavelengths from transitions in Mer-
cury's orbitals, multiplied further by the influence of an electromag-
net through the Zeeman effect. This light is condensed and passed 
through an interference filter, eliminating all but a specific desired 
band of wavelengths around 546 nm. A Fabry-Perot interferometer 
repeatedly reflects light and creates interference fringes like those 
described in Figure Two. The linear polarizer polarizes light either 
0° or 90° to the optical rail. Lastly, an aperture blocks out all but the 
center of the light and an objective lens focuses this onto the camera 
sensor, which is assembled by the computer into an image.

This image can then be processed into a horizontal profile, which 
highlights the peaks and troughs of the image, producing a dataset 
like that in Figure Five.



Methods & Procedures

Perhaps the first important point is to describe the 
conversion of an image into its correspondent horizontal 
profile like that of Figure Five. As we see, the relative in-
tensity of the light is described as a correspondent value 
on the vertical axis of the profile. There is also a level of 
ambient noise, as displayed in (b) which systematically 
offsets the data. We can quantify this noise with a hori-
zontal profile set and subtract it from the dataset, which 
we demonstrate in (c).

The horizontal profile describes the position of this 
intensity from 0 to 765, which covers the horizontal pix-
el count of the image. To ease the process of data analy-
sis, this will be how our fringes will be counted.

As the horizontal axis is not centered, we need to 
compute a central point from which to consider our 
angles θ. We can average the distances between each of 
the primary peaks of Figure Five (when B = 0) and find a 
number with an associated standard deviation which we 
can apply in our further error propagation. 

The calculation of θ is described by the rather 
simple geometries associated with the Fabry-Perot and 
the objective lens. Referencing both Figures Two and 
Four, we can determine that  where n 
is our number of pixels multiplied by the resolution of 9 
μm and f is the focal length of the camera objective lens, 
135mm.

We can solve this equation for θ to find the angle 
for any pixel from the center.

Verification of  

The first in our list of goals is the relationship 
between the slope of θ2 and the wavelength of light and 
Fabry-Perot separation.

We perform this analysis on the fringes produced 
by the optical rail when the electromagnet is turned off 
(that is, B = 0). Regardless of the polarization (π or σ), 
the interference fringes produced will be the same if 
there is no magnetic field influencing the emissions. In 
our case, we use two images to calculate both a zeropoint 
to center our data and, subsequently, the calculations for 
θ deviation from the center.

Squaring this value, and finding the slope using the 
method of least squares, we find a slope  for each of 
the images.

Comparing the value we receive calculating , we 
can determine the level of agreement between them.

(a) Image of Interference pattern with electromagnet off

(b) Ambient noise with discharge tube off

(c) Horizontal profile of (a) with noise from (b) subtracted

Figure Five: The process of obtaining a horizontal profile, 
subtracting noise from the data

Having obtained an image for our interference pattern, we can 
then take another set of data for the background noise. In our case, 
we took four images of the background noise to find an average 
error under multiple conditions. We decided not to propagate error 
from it as the standard deviation was very low.

Taking the horizontal profiles of each, we can find our corrected 
profile for the interference fringes (a) by subtracting the average 
noise (b) from the set. The resulting corrected image is shown in (c).

With this data, we can accurately determine the peaks' spacing 
from the zero-point, highlighted as the blue line, and determine the 
respective angle θ using our equation described in the beginning of 
this section.



Analysis of π polarized interference fringes

Starting with 0° polarization, let's investigate how 
the horizontal profile appears, and how we go about 
solving for  which we will need to calculate the Bohr 
magneton.

Each horizontal profile like that of Figure Six (a), 
has a correspondent magnetic field strength it is associ-
ated with. As we know, the magnetic field increases an 
energy gap which is proportional with the field strength. 
Therefore, as we increase in B, we expect the gap  to 
increase proportionally.

In the case of π polarization, we know the lower-in-
tensity mJ = ±1 lines occur evenly spaced from higher-in-
tensity mJ = 0 lines, as shown in Figure Three (a). The 
experimental data in Figure Six demonstrates this ex-
actly, with a single dominant peak saddling two smaller 
peaks.

Leveraging the equation relating θa and θb corre-
spond to their wavelengths and difference in energy,

 (Brown, 
2019), we can reference Figure Six (b). We can use the 
spacing between the two sub-peaks we can define Ea - Eb 
= ΔE =  such that

specifically for the π polarization.
The average energy  correspondent to our 

known value for the average wavelength.
For each set of peaks we can discern Figure Six (a), 

we can perform this analysis to solve for the value of the 
Bohr magneton. As the magnetic field increases, howev-
er, the energy spacing will continue to increase, eventu-
ally such that the peaks begin to overlap with others and 
noise takes over. Additionally, there exists a general level 
of noise which takes over the profile as a whole. For this 
reason, our measurements of this polarization are bound-
ed by (500 < B < 1100) milliTesla and about ten peaks 
per profile (five per side).

Figure Six: Obtaining  from π polarized profiles

(a) Horizontal profile of the Zeeman effect at B = 657.3mT
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This example profile is at a magnetic field strength 657.3mT, 
with about six discernible peaks per side. Zooming into a couple 
peaks, we can easily see the difference in relative intensity and the 
equally spaced energy gaps between the major- and sub-peaks.

These energy gaps we define as ΔE which are related to the Bohr 
magneton by the mathematics defined to the left. Specific to this 
diagram, we can see that the term is defined by mJ, which 
itself is clearly transitions to 0 and ±1, with the major peak as the 
former and the subpeaks as the latter.



Analysis of σ polarized interference fringes

Turning our polarizer to 90°, we get a profile simi-
lar to that of Figure Seven (a). Similar to the π polariza-
tion, the spacing between the peak sets increases propor-
tionally to the magnetic field strength.

In the case of σ polarization, however, the two 
minature peaks actually correspond to six different tran-
sitions which correspond to final values of  mJ = ±2,±1 
and 0. These transitions have relative intensities and 
positions shown in Figure Three (b), however the profile 
in Figure Seven clearly shows just two peaks per set. This 
is because our camera resolution is too low to pick up all 
three distinct lines. 

In order to accurately measure these lines, we need 
to find the weighted average of the position of these lines 
based on their intensity. Using a simple method of find-
ing the arithmetic mean, we get a separation ~mJ = 5/4 = 
1.25. When we measure the individual angles and utilize 
them in our equations, we include this in the place of 
our value mJ.

Starting in the same place as we did for π polar-
ization, we can find the we can use the spacing between 
two peaks as Ea - Eb = ΔE =  such that

specifically for the σ polarization.
Similar to our other polarization, there are bounds 

where noise overtakes these relatively low-intensity peaks 
or the magnetic field separates them too far. In the case 
of σ polarization, our set ranges from (125 < B < 500) 
milliTesla and about ten peaks per profile.

Figure Seven: Obtaining  from σ polarized profiles

(a) Horizontal profile of the Zeeman effect at B = 128.6mT

Position

(b) Close-up of energy separations at angles θ

In this example, the magnetic field strength is 128.6 mT. (b) 
demonstrates the spacing of the lines, which are evaluated down-
stream as a weighted average of three transmission lines per peak 
described in Figure Three (b). These peaks are too small for the 
resolution of our camera. Importantly, it means that the equation 
for the calculation of the Bohr magneton involves a quantum 
momentum number ~mJ = 1.25 as the weighted average for the 
indiscernible peaks.
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Error Analysis

Some discussion must specifically be had over the 
choice of error, its propagation, and our standards for 
determining whether our measurement is in good agree-
ment with theory.

Firstly, with the calculated zero point, we determine 
our error in the measurement of pixel position based on 
the variance σ2  from this calculation. We determine the 
error to be the square root of the set's variance, or its 
standard deviation. Say some value q has a variance σq

2 
-- its error will be σq = δq. We can represent this value as 
qi ± δqi. 

There are various different external values which 
we attach error in order to accurately represent the role 
of their variation at such small scales. For the average 
wavelength λ and mirror separation t, for example, we 
attach a deviation of 0.5 to the finest order we are given. 
For λ = 597.3 nm we attach ±0.05 nm to compensate 

for any variance therein. In the case of , we come to 
a unitless value of (8.402 ± 0.769) × 10-5 with which to 
compare to our experimental value.

Values which are universal and independent from 
the materials we are given, specifically the Bohr magne-
ton, use previous studies to determine their value and 
error in this report. Our value for the magneton is thusly 
μ0 = 9.2740100783 × 10-24 ± 2.8 × 10-33 J/T (CODATA, 
2018).

When propagating error, we will use the rule of 
quadrature. For some function q(x1,x2,...,xn) with associ-
ated errors δxi, the error for that function is:

This propagation occurs for any arithmetic opera-
tions that contain values with an attached uncertainty. 

The average energy , for example, has error 
available to be propagated from λ such that the value  

= (3.617 ± 0.0003) × 10-19 J.
For each equation, we repeat this process so that we 

arrive on a final value and weight for each value which 
we want to compare.

Figure Eight: 
The Gaussian 
Distribution

The Gaussian Distribution takes in our combined uncertainty to 
produce a distribution which evaluates the probabilistically ‘best’ value. 
With this, we can calculate the area under the curve from our data 
point (which will be the deviation from the accepted value) and find 
a p-value. This value informs our evaluation of the accuracy of experi-
mental results.

Reaching the final value and uncertainty may 
involve the averaging of numbers with respect to their 
weight. This process, where we find the weighted average 
of a set, is defined by the following equation:

The weight σ for our Gaussian Distribution will 
then be the error propagated from the experimental and 
reference values for an uncertainty about the mean of the 
values.

Looking at Figure Eight, we see the equation for 
the Gaussian distribution, which defines its own error 
parameter σ and a center for the function, μ. We want to 
center our distribution at x = 0 for simplicity's sake, so 
we choose μ = 0.

The coefficient of the Gaussian Distribution nor-
malizes the distribution, such that the integral over its 
full bounds (-∞,∞) resolves to one. For this reason, the 
p-value suggests a percent likelihood that a given value is 
correctly obtained.



Results

The first piece of information we need to establish 
is the calculation of a zero-point. Using both datasets, 
we use the methods described in the prior section and 
recieve a value for the center z = 398.14 ± 0.23 pixels. As 
we do not move the camera or change any of its settings 
throughout the 2-hour data collection period, we can 
assume that the zero point is identical for each of the 
images throughout this experiment.

Verification of  
 
Our first goal is to plot the values we obtain for θ2 

against their correspondent order. We took two datasets 
when the magnetic field strength was zero, so it makes 
sense to calculate two sets of this data for higher preci-
sion. While these plots are separated in Figures Nine (a) 
and (b), it needs specific emphasis that the polarization 
lens does not affect the data when the magnetic field is 
negligible. This is to say that both images where B = 0 
are theoretically identical.

Regardless, we can take the least square regression 
of each left- and right-side order slopes of θ2 and com-
pare them to the theoretical value which is colored blue 
for each plot in Figure Nine. As we can clearly see in 
(a) and (b), there is a visually high level of correlation 
between the values. 

Propagating error and taking the slopes and plot-
ting the experimental  and theoretical  in (c), we 
see that the values are rather close. The error in the the-
oretical value far outpaces that of the experimental error, 
however, with the former having an error of roughly 
7.69 × 10-6 degrees2 and the latter on the order of 10-10. 
This is largely because the standard deviation in the mea-
surement of the zero point is small enough that the error 
is reduced significantly when propagated by the rule 
of quadrature (0.22 × 9 × 10-6). For now, proceed with 
further explanation to come in the Discussion section.

Taking these respective uncertainties and following 
our guidelines for error analysis, we take the weighted 
average of the values from the π and σ polarizations 
which comes to  = 8.505 with a negligible error on 
the order of 10-10.

Creating the Gaussian distribution shown in Figure 
Ten we get a one-tailed p-value of 0.447. This suggests 
strong agreement, however one must note that the 
relatively high error in the theoretical value drives the 
particularly strong correlation.

Figure Nine: Analysis of θ2 versus Order with B = 0

(a) 
Comparison of 
θ2 versus Order 
for π 
polarization

(b) 
Comparison of 
θ2 versus Order 
for σ 
polarization

  versus 

(c) 
Theoretical 
 with error

plotted against
calculated value 

for π and σ

The first, most important point to note is that with a negligible B 
field strength, there actually is no difference between π and σ polar-
izations. In fact, their values should be practically equal. There is, of 
course, some variation which occurs on a minute order.

The first two figures track the two polarizations' left- and 
right-order θ calculations for each order. As we discuss, their linear 
slopes are correspondent with the theoretical value (orange) .

Taking a least-squares linear regression of their combined data 
(blue) we can compare those calculated slopes from each set to the 
theoretical value in (c). Error in both the theoretical and experimen-
tal data is propagated, however the error for the experimental sets is 
on a miniscule order (10-10) and so does not even appear compared 
to that of the theoretical. This is acceptable due to the high correla-
tion and is elaborated upon further in the Discussion section.

The resulting data is fed into our analysis of error and we get a 
resultant p-value of 44.7%.



Figure Ten: Gaussian Distribution of the theoretical versus 
reference value for 

This Gaussian distribution combines the uncertainties attached to 
the reference value  with the error in our weighted average of  to 
create a probability distribution for the likelihood of our value being 
collected. In this case, the one-tailed p-value is found to be 44.7%, 
indicating good agreement.

Derivation of the Bohr magneton from π polarized 
interference fringes

 
From a selection of six clean datasets in varying 

magnetic field strengths, we produce a set of values for 
the Bohr magneton shown in Figure Eleven (a). The 
magnetic field strength varies from 512.2 to 1,092 mT, 
which are shown in Figure Eleven (b) to demonstrate the 
appearences of these fringes at their extremes. Specifi-
cally, this figure includes the computed 'corners' of the 
dataset, highlighting the maxima and minima in red and 
green dots respectively.

We combine all of these values in a weighted aver-
age to create our Gaussian Distribution in Figure Eleven 
(c) for the Bohr magneton at π polarization to get a 
value of μ0 = (9.662 ± 0.135) × 10-24 J/T.

This value results in a one-tailed p-value of 0.130, 
or a likelihood of having performed the experiment cor-
rectly and gotten this result of 13%.

This value indicates agreement, meaning that our 
experimental process and mathematics are were likely 
performed accurate to reference value we are comparing 
against.

Figure Eleven: Analysis of the Bohr Magneton using π     
polarized interference fringes

B=512.2 mT B=1,092 mT
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(b) Horizontal profiles of the lowest and highest magnetic 
field strengths calculated

(c) Gaussian Distribution comparing the weighted average 
and reference values of the Bohr magneton

The first figure, (a), 
compares the calcu-
lated Bohr magnetons 
for each π polarized set 
against one another. 
Ordered by their mag-
netic field strength, 
they have a line which 
demonstrates their 
associated error and 
includes the weighted 
average value (error in light red) and the reference value.

These values varied in separation due to the variation in magnetic 
field strength demonstrated in (b). The magneton values in (a) and their 
correspondent errors are propagated with the error in the reference val-
ue and used to create the Gaussian probability distribution seen in (c).

This distribution reveals a one-tailed p-value of 13%, indicating 
good agreement.
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(a) Comparison of derived values of the Bohr magneton to 
the weighted average and reference values

Each bar 
represents a 
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error.

The shaded 
red rep-
resents the 
weighted 
average 
error.



Derivation of the Bohr magneton from σ polarized 
interference fringes

 Similar to the last, we take a series of five datasets 
of varying field strengths from 128.6 to 448.1 mT. The 
lower range of magnetic fields reflects the larger separa-
tion that the states produce which means that they more 
easily overlap by the time field strengths reach 600-or-so 
mT. We calculate the correspondent set of Bohr mage-
neton values and show them in Figure Twelve (a). Figure 
Twelve (b) shows the horizontal profiles at the maximum 
and minimum field strength values including the maxi-
ma and minima for highlighted for each respectively.

We combine all of these values in a weighted aver-
age to create our Gaussian Distribution in Figure Twelve 
(c) for the Bohr magneton at σ polarization to get a 
value of μ0 = (8.673 ± 0.369) × 10-24 J/T.

This value results in a one-tailed p-value of 0.254, 
or a likelihood of having performed the experiment cor-
rectly and gotten this result of 25.4%.

While this value is numerically further to our 
reference value compared to the value we had for π po-
larization, the uncertainty attached to the σ calculation 
increases the width of the Gaussian and therefore brings 
the weighted average within fewer standard deviations of 
the mean.

As such, this value indicates agreement, meaning 
that both calculations for the Bohr magneton are in 
good agreement with theory and suggests that our exper-
iment has a good probability of being accurate.

Figure Twelve: Analysis of the Bohr Magneton using σ     
polarized interference fringes

B=128.6 mT B=448.1 mT

Re
la

tiv
e 

In
te

ns
ity

Pixel Position

(b) Horizontal profiles of the lowest and highest magnetic 
field strengths calculated

(c) Gaussian Distribution comparing the weighted average 
and reference values of the Bohr magneton

The magneton 
values for σ polariza-
tion are calculated and 
compared against one 
another, the weighted 
average value and the 
reference value in (a). 

They are ordered 
by their magnetic 
field strength, which 
proportionally varies 
the energy separation; the extremes of which are demonstrated by (b). 
Here, the lowest and highest magnetic field strengths and their resultant 
energy separation are shown.

Lastly, (c) propagates the error in the weighted average value and the 
reference value to create a Gaussian probability distribution with a one-
tailed p-value of 25.4%, indicating good agreement.
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Value of the Bohr Magneton (J/T)

(a) Comparison of derived values of the Bohr magneton to 
the weighted average and reference values

Each bar 
represents a 
value with 
attached 
error.

The shaded 
red rep-
resents the 
weighted 
average 
error.

Discussion

The remainder of this report is dedicated to the dis-
cussion of the results, how they reflect our methodology 
and additional recommendations and improvements for 
future experimentation.

Firstly, addressing the experimental calculation of 

, it is important to note that while the propagation 
of error for the theoretical value was correctly done, the 
experiment would be improved with a more rigorous 
measurement of the average wavelength to perhaps a 
few more decimals. Frankly, the low variation in the 
zero-point and the high correlation for the experimental 
data minimized the error drastically in the mathematics. 
As such, the theoretical error dominated the Gaussian 
width and resulted in a comfortable agreement.

In most cases, we would expect a lower p-value 
and the fact that our value is so high suggests a need 



for concern. I found no mathematical errors in the few 
operations it takes to calculate the uncertainty, which 
suggests that the reference value simply requires a finer 
precision to be tested best. For our purposes, however, 
the correlation stands and we can experimentally verify 
this principle.

For both the π and σ polarizations, there is quite 
a bit of variation between calculated values of the Bohr 
magneton. The resultant weighted average values, how-
ever, hover around a similar area and, as such, reflect that 
though the resolution of the camera is low, the number 
of trials and data points collected is able to reduce ran-
dom noise in our measurements.

Specifically, there is no evident systematic error. 
The values don't follow any pattern regarding their 
magnetic field strength and they are largely within three 
standard deviations of the reference value with the excep-
tion of B = 754.2 mT in the π polarization group. 

As such, there is little reason to believe that the 
generally good p-values of 0.13 and 0.254 for the π and 
σ polarizations, respectively, have any inherent problems. 
Future experiments could increase the size of the dataset 
and the number of points collected to become increas-
ingly precise and drown out the noise from the camera 
sensor. They could additionally invest in a higher resolu-
tion camera and a more precise Hall probe. 

That being said, however, the values obtained in 
this report are largely in good agreement with little more 
to recommend in terms of precision than more data and 
better equipment.

At a higher level, these results are evidence of two 
important points. First, that the Zeeman effect is in-
trinsically linked to the quantum-mechanical properties 
of the electron and its angular and orbital momentum. 
Second, that Zeeman and Lorentz truly did discover 
properties of the electron before the particle was experi-
mentally discovered.

The experimental analysis of the Zeeman effect 
kicked off a field of study which culiminated in a deep 
understanding of the structure of the atom, the sub-
atomic particles within it and the quantum interactions 
that they produce. More than a century later, that 
research continues in the Standard Model, with new and 
different exotic particles and force-carries being pro-
duced, parsed out and published in linear accelerators 
around the world. Zeeman's effect on the history of the 
electron is perhaps more difficult to quantify than the 
natural phenomena named after him.

Appendix

Bibliography

Zeeman, Pieter (February, 1897). The Effect of 
Magnetisation on the Nature of Light Emitted by 
a Substance. Nature Vol. 55. (Accessed March 14, 
2020). Retrieved from https://hdl.handle.net/2027/
mdp.39015024088695?urlappend=%3Bseq=238.

Brown, George. Physics 134 Advanced Laboratory Man-
ual: The Zeeman Experiment (p.123 - 131) & Appen-
dix: The Fabry-Perot Interferometer (p. 132 - 136)

2018 CODATA recommended values (May 20, 2019). 
Bohr Magneton. National Institute of Science and 
Technology. (Accessed March 14, 2020). Retrieved from 
https://www.physics.nist.gov/cgi-bin/cuu/Value?mub

https://hdl.handle.net/2027/mdp.39015024088695?urlappend=%3Bseq=238
https://hdl.handle.net/2027/mdp.39015024088695?urlappend=%3Bseq=238
https://www.physics.nist.gov/cgi-bin/cuu/Value?mub

