February 8, 2023 SQL Xavier Boluna

Contents

p—t

(1.1 Docker imagel

(1.2 Connecting with SQLTools|

—_

—_

2 Commands|

2.1 Creating a Table,
2.2 Inserting values (INSERT INTO)[.
2.3 Searching (SELECT, GROUPBY)
P4 TIndexing
2.5 Counting (COUNTQ))l i
2.6 Updating entries (UPDATE SET)|
2.7 Relational Data (FOREIGN KEY)[.
2.8 Relational queries (JOIN)[.,
2.9 Join with intermediate (third) table[.
2.10 Dropping (DROP TABLE;)| . .« « « « o o v oot e e e

N O Ut OO R W NN

1 Setup

1.1 Docker image

Build image

docker run --name mysql_server -p 3306:3306 -e MYSQL_ROOT_PASSWORD=secret
-d mysql -v ~/Programming/Sandbox/SQLSanbox/image

Start image

docker start mysql_server

Check status

docker ps

Access

docker exec -it mysql_server mysql -p

Stop image

docker stop mysql_server

1.2 Connecting with SQLTools

MySQLS requires making a user (not just connecting with root).

February 8, 2023 SQL Xavier Boluna

-- Access through terminal £\tof

CREATE USER 'sqluser'’'' IDENTIFIED WITH mysql_native_password BY 'password';
GRANT ALL PRIVILEGES ON *.* TO 'sqluser'’'';

FLUSH PRIVILEGES;

Now it should be simple to connect with SQLTools.

{

"mysqlOptions": {
"authProtocol": "default"

s
"previewLimit": 50,
"server": "localhost",
"port": 3306,
"driver": "MySQL",
"name": "localhost",
"username": "sqluser",
"password": "password",
"database": "Testing"

2 Commands

Commands are all-caps by convention. Semicolon is required to close lines.
The following is example commands for an airbnb database.

2.1 Creating a Table

-- 1S a comment; use @block to create a ipynb-like cell in SQLTools £\tof
-— O@block

—-- Create database
CREATE DATABASE Airbnb;
—-— Check that 1t exists
SHOW DATABASES;

-— Must give columns dtypes
CREATE TABLE Users(

February 8, 2023 SQL Xavier Boluna

—-— PRIMARY KEY makes 1d the index of the table
—-— AUTO_INCREMENT automatically increments the td for us
id INT PRIMARY KEY AUTO_INCREMENT,

-- 255 (convention): max keys with 8bit number
—-— NOT NULL makes the field required

UNIQUE requires that each email ©s unique
email VARCHAR(255) NOT NULL UNIQUE,

—-— TEXT can store unspecified string lenght
bio TEXT,

-— Country code is fized at 2 chars:

-— CHAR enforces len == 2 ezactly

country CHAR(2)

2.2 Inserting values (INSERT INTO)

-— Inserting values
INSERT INTO Users(email, bio, country)
VALUES (
-— Don't need ID as we have AUTO_INCREMENT
'hello@world.com',
'Biography text!',
IUSI
)3

-— Insert multiple rows
INSERT INTO Users(email, bio, country)

VALUES
('hola@munda.com', 'foo', 'MX'),
('bonjour@monde.com', 'bar', 'FR');

February 8, 2023 SQL Xavier Boluna

2.3 Searching (SELECT, GROUPBY)

-— Show entire table
SELECT * FROM Users;

-— Select gtven columns

SELECT email, id FROM Users

-— Order by id in ascending order
ORDER BY id ASC

-— Print only 2 rows

LIMIT 2;

-— Including conditional statements
SELECT email, id, country FROM Users
WHERE country = 'US'

-— Pattern: all emails that start with h
OR email LIKE 'h%';

GROUPBY after a conditional query

—-— COUNT number of users & GROUP count BY country
SELECT COUNT(id), country FROM Users

GROUP BY country;

2.4 Indexing

SELECT with pattern queries can be slow with large databases. Indexing allows access
to important keywords without scanning the entire database, but requires additional
memory & makes writing slower.

CREATE INDEX email_index ON Users(email);
-— Now pattern queries on ematl should be faster.

2.5 Counting (COUNT())

-— Count number of ids in Users
SELECT COUNT(id) FROM Users;

-— Can alias the output column name
SELECT COUNT(id) AS NumberOfUsers in Users;

February 8, 2023 SQL Xavier Boluna

2.6 Updating entries (UPDATE SET)

UPDATE Users

-— Which fields to update

SET country = 'UK'

-— Condttions by which to select rows
WHERE id = 3;

2.7 Relational Data (FOREIGN KEY)

CREATE TABLE Rooms (
id INT AUTO_INCREMENT,
street VARCHAR(255),
owner_id INT NOT NULL,
-- Alternative way to state id is the index
PRIMARY KEY (id),
-- References key in Users table
—-—- FOREIGN KEY tells database not to delete related data
FOREIGN KEY (owner_id) REFERENCES Users(id)
)

INSERT INTO Rooms (owner_id, street)
VALUES

(1, 'san diego sailboat'),

(1, 'nantucket cottage'),

(1, 'vail cabin'),

(1, 'sf cardboard box'),

(2, '4sqft apartment');

2.8 Relational queries (JOIN)
Reading data from 2 tables.

—-— Return all rooms' owner_ids associated with 2ds in Users
SELECT * FROM Users

INNER JOIN Rooms

ON Rooms.owner_id = Users.id;

-- Left join wtll give ALL Users ids, even those w/o a Room

February 8, 2023 SQL Xavier Boluna

-— and inserts NULL in unavatlable Rooms fields
SELECT * FROM Users

LEFT JOIN Rooms

ON Rooms.owner_id = Users.id;

-— Right join == inner join since all Rooms must have a User td
-— MySQL does not support OUTER JOIN, but others do!

-— Foreign columns are automatically renamed e.g. Users.id
-— Overrride column names by aliasing with AS
SELECT
-— Output table aliases
Users.id AS user_id,
Rooms.id AS room_id,
email,
street
FROM Users
INNER JOIN Rooms on Rooms.owner_id = Users.id;

2.9 Join with intermediate (third) table

CREATE TABLE Bookings(

id INT AUTO_INCREMENT,

guest_id INT NOT NULL,

room_id INT NOT NULL,

check_in DATETIME,

PRIMARY KEY (id),

-- Reference the two other tables

FOREIGN KEY(guest_id) REFERENCES Users(id),

FOREIGN KEY(room_id) REFERENCES Rooms(id)
)

-— Dummy data
INSERT INTO Bookings(guest_id, room_id, check_in)
VALUES

-— NOWw() gets current datetime

(3,1, NOW()),

February 8, 2023 SQL

Xavier Boluna

-— Quotations to specify a datetime
(2,1, '2022-12-10 15:06:25")

-— Timestamp not needed

(2,2, '2022-10-15");

-— Select booking by a particular individual
SELECT guest_id, street, check_in

FROM Bookings

-— Rooms which are booked by a guest

INNER JOIN Rooms ON Rooms.owner_id = guest_id
-— All rooms which guest 2 has booked

WHERE guest_id = 2;

-- History of all guests who have stayed im a Toom
SELECT room_id, guest_id, email, bio

FROM Bookings

-— All users with a guest_<d

INNER JOIN Users ON Users.id = guest_id

-— All guests which have booked Toom 1

WHERE room_id = 1;

2.10 Dropping (DROP TABLE;)

Delete individual data, table or database.

—-— Bookings must be dropped first as the others are referenced by <t

DROP TABLE Bookings;

-— Rooms must be dropped second as it references by Users

DROP TABLE Rooms;
DROP TABLE Users;
DROP DATABASE Airbnb;

	Setup
	Docker image
	Connecting with SQLTools

	Commands
	Creating a Table
	Inserting values (sqlINSERT INTO)
	Searching (sqlSELECT, GROUPBY)
	Indexing
	Counting (sqlCOUNT())
	Updating entries (sqlUPDATE SET)
	Relational Data (sqlFOREIGN KEY)
	Relational queries (sqlJOIN)
	Join with intermediate (third) table
	Dropping (sqlDROP TABLE;)

