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ABSTRACT:

	 Using a Geiger-Mueller tube and a Cesium-137 source, we measured the rate of 
gamma-rays which could penetrate varying thicknesses of lead plating. We analyze the 
distribution in which we collect counting rate data, the dead-time of our apparatus and 
electronics, and finally reach a conclusion on the pattern of the intensity of incident gamma 
rays through lead: I = I0e

µx = eAxeB = e-1.82xe2.55 with a Χ2 confidence level of 4.88×10-2, sug-
gesting that it is reasonable. As such, we are able to obtain our absorption coefficient value 
of lead µ = 1.82 cm-1 ± 0.185 cm-1 which we then compare to the theoretical value, to find a 
lacking correlation.
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INTRODUCTION:

	 About thirty times a minute, gamma rays 
pass through your body. These ionizing electro-
magnetic waves travel millions of lightyears, scat-
tering their energetic guts across Earth's atmo-
sphere and catalyzing a wider shower of photons 
through air, living things and solid walls. Gamma 
rays, in fact, are the most penetrating type of ra-
diation; and likewise the most damaging. Ionizing 
radiation involves energies capable of damaging 
organs, mutating DNA and harming other sen-
sitive parts of the human body. It makes sense, 
then, to figure out what it takes to minimize their 
penetration rate.
	 The same gamma rays which travel across 
our universe can be emitted much closer to 
home, when unstable nuclei decay and produce 
high-energy photons, among other particles. 
Cesium-137 (Cs-137) is a fine example, and the 
subject of our experiment. We will use increasing 
thicknesses of lead (Pb) to measure these gam-
ma rays' penetrative abilities.
	 We measure each decay event with a 
Geiger-Mueller (GM) tube, as shown in Figure 
One. As our Cesium decays, it emits gamma rays 
which meet the air, our lead plates and, occasion-
ally, the interior of our GM tube. Once inside the 
tube, gas within is energized by the gamma ray, 
producing increasing cascades of photons and 
electrons1. Maintaining a high electric potential 
between the anode (red) within the tube and the 
cathode (wall) ensures that a significant number 
of electrons from our cascade zips towards the 
anode, making a blip on our oscilloscope. Each 
decay event that reaches the GM tube will create 
a blip in this fashion.
	 Exactly when a decay happens is inde-
pendent from the next. The process is essentially 
random: we don't predict any particular rate of 
decay; only analyze it over a large timescale.
	 This random distribution when plotted 
against probability should follow the Poission 
Distribution, shown in Figure Two. It follows that 
for every thickness of shielding we use, the data 
we retrieve should match the Poisson Distribution 
in rate frequency.
	 In the following section, APPARATUS AND 
PROCEDURE, I will discuss in detail our setup 
and methods of experimentation. Subsequently, 
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Figure 2

Figure 2 graphs the Poission Distribution obtained from a 
histogram with real data from an unshielded Cs-137 source 
from about 30mm away. In this case, it's easy to see that a 
rate of about 10.8 counts/second is probabilistically the most 
likely.

1 Brown, Lab Manual



	 For each lead plate, we obtained a mass 
and area. We then ran our counter for at least 
2,000 counts, and recorded this value and the 
time it took. Lastly, we took a count of the back-
ground radiation (cosmic gamma rays) for the 
same duration as our longest measurement, 26 
minutes and 53 seconds (1,613 seconds).
	 As such, our independent variables are 
our area and mass, for which we conveniently 
calculate absorber thickness, and time. Our de-
pendent variable is the time, with which we calcu-
late our count rate.

APPARATUS AND PROCEDURE:

	 Let's start with a single gamma ray, emit-
ted from our Cs-137 source. We placed our 
source exactly 4 centimeters away from bottom 
of our GM tube. As such, our thicknesses of lead 
plating varied from 3 to 24 millimeters, spanning 
just over two centimeters. Instead of measuring 
thickness directly, however, we measured mass 
and area to calculate more accurately our ab-
sorber thickness ρx [g/cm2].
	 Our Spectech box houses two capaci-
tors and a counter, and moderates the potential 
across the anode and cathode of the GM tube. 
For our experiment, we set the potential at 800 
volts. The capacitors ensure that, for each line, 
the measuring system's own electronics don't 
interfere with the actual signal.
	 Therein lies another issue of note: each 
gamma ray creates an electron cascade, with our 
output voltage proportional to the number of elec-
trons that are actually activated. Between one 
cascade and the other, there exists a dead-time 
where the Geiger tube isn't yet ready to recieve 
the next signal. Pulses that develop during this 
relatively short time will not attain their full ampli-
tude. This is a metric defined temporally by when 
the voltage reaches the 'trigger threshold;' at 
which the tube registers a pulse at roughly half of 
the maximum voltage amplitude. We can there-
by quantify the dead time by tracing these lines 
using the tools provided by the oscilloscope. This 
data is collated further in Table 1.
	 Figure 3b shows our view of the oscillo-
scope when we set our pulses on 'infinite persist' 
in order to make accurate measurements. Mea-
suring the difference in time at the trigger thresh-
old gives us a dead-time value τ = 580µs.

I will comment and analyze our raw data in RE-
SULTS, including error analysis, and make some 
experimental measurements and conclusions. 
Lastly, DISCUSSIONS AND CONCLUSIONS 
comments on shortcomings of the experiment, 
offers explanations and justifications for those 
errors and suggests improvements for subse-
quent iterations of this experiment. The report 
is appended by ACKNOWLEDGEMENTS AND 
SOURCES and the TABLES section, which pro-
vides the raw data we used in our experiment.
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Figure 3a shows our entire circuit setup starting with the 
Cesium sample which emits a gamma ray into the GM-tube, 
kickstarting a voltage pulse which is counted and displayed 
on our oscilloscope.
Figure 3b shows this pulse's waveform, using the trigger 
threshold (= 1/2 the max amplitude) to determine a dead-time 
between the GM-tube pulses.



ωi = 1/σyi
2      eq. 3

for some function q = q(x,y)
σq = δq = √[ (∂q/∂x × σx)2 + (∂q/∂y × σy)2 ]

B = (ΣωΣωxy - ΣωxΣωy)/Δ	 eq. 4b
A = (Σωx2Σωy) - ΣωxΣωxy)/Δ	 eq. 4a

Δ = ΣωΣωx2 - (Σωx)2	 eq. 4c
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Figure 5 applies our propagated error and plots the weighted 
least squares regression. 
The equation is: y = Ax + B = -1.82x + 2.55 with a Χ2 confi-
dence level of 4.88×10-2, suggesting that it is reasonable.

	 Both absorber thickness and count rate 
are quite easily calculated with:1

	 All this raw data is collected in the TA-
BLES section appended to the end of this report. 
Calculations from 1a,b are included.

absorber thickness
ρx = m/A      eq. 1a

count rate
r = counts/time      eq. 1b

RESULTS

	 It's first important to mention our back-
ground rate. Having taken our source far away 
from the GM tube, we counted for 1,613 seconds 
and counted just 814; a background rate of 0.52 
counts per second.
	 We can suggest a model for Intensity (eV), 
of the exponential decay form1:

	 which, linearized, gives:

	 Such that we can create Figure Four, 
which plots this relationship using Table 2.
	 In order to create a linear regression for 
these points, we must first propagate the error for 
these values. We represent error as a function of 
our operations on our parameters2:

where error is represented by σq.
	 Our two errors to be propagated for ln(I-
bkg rate) are the background rate and counting 
rate. 
	 We can determine the error in our counting 
procedure by taking more measurements of the 
background counting rate, which should be con-
stant over more data and time. We can then take 
the standard deviation of this data to produce an 
error. Table 3 contains more collection of back-
ground data, with which we produce an error σbkg 
= σcounting = 3.30×10-2. I discuss why this determi-
nation of error is accurate later in DISCUSSIONS 
AND CONCLUSIONS.
	 Having extrapolated the data, we propa-
gate it for our dataset and apply error bars to the 
data. 

I = I0e-Ax

I = e(count rate - bkg rate) + bkg rate      eq.2a

ln(I-bkg rate) = count rate - bkg rate       eq. 2b

Figure 4
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	 We determine a weight for each data point 
using 	our resulting variance2:

which allows us to calculate a weighted least 
squares regression to apply to our data set2:

where A is our slope and B is our y-intercept.
	 Figure Five shows the error bars we deter-
mined along with the least squares regression we 
calculated for it.

1 Brown, Lab Manual, 2Yan, Statistics Lecture 3



	 Our next vital step is measuring the de-
gree of confidence we have in our regression. For 
this, we use the Chi-Square test which takes the 
form2:

where O represents the observed value, E the 
expected and the result, Χ2 indicates:

	 For our regression, we achieve a Chi-
Square value of 0.0488, or 4.88×10-2 which 
suggests a very reasonable regression -- nearly 
perfect, in fact.
	 If, then, we decide to take our original 
equation 2b and raise both sides by e:

we should be able to similarly raise our weighted 
linear regression by e such that y = e(Ax+B).
	 Plotting the both of these, we get Figure 
Six, which aligns with our expectation of an expo-
nential decay.
	 Breaking down the equation 2c, we at-
tempt to take the limit as x→∞:

	 This means that the limit of our function 
should be zero, which matches what Figure Six 
seems to go towards.
	 With Intensity - bkg rate = 0, we can deter-
mine that at large x, the Intensity is equal to the 
background rate, which is exactly what we expect 
if the lead plating is thick enough to block all of 
the penetrating rays from our source.
	 The total absorption coefficient, μ, com-
bines the absorption due to the photoelectric, 
compton and pair production effects1:

	 The total absorption ties into the theory of 
exponential decay with our original equation 2:

where we actually reveal1 that A = μ.
	 Therefore,

where I0 is formed by our intercept value.
	 As such, we make the determination that 
μ = 1.82 cm-1 and our initial intensity I0 = 2.55 eV.

Χ2 = Σk=0ωk(Ok - Ek)2           eq. 5

Χ2 = 0 :: perfect match
Χ2 ≈ n :: reasonable
Χ2 >> n :: significant disagreement

Figure 6
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Figure 6 simply rewrites Figure 5 as its more easily recog-
nizable form as an exponential decay, and applies the same 
operations to its linear regression to create an exponential fit.
As we can see, the exponential begins to flatten out, presum-
ably towards the limit zero.

	 Next, we want to evaluate the uncertainty 
we obtain in our μ value. We begin by finding the 
sums of squares and covariance of our data3:

wherein we can evaluate:

where σA finally signifies our error σμ.
	 We take our σy = σbackground from earlier and 
thusly determine our error to be σμ = 0.185 cm-1.
	 As such, we know our total absorption 
coefficient μ = 1.82 cm-1 ± 0.185 cm-1 = 1.82 cm-1 
± 10.2%.

I - bkg rate  = e(count rate - bkg rate)     eq.2c

I - bkg rate = e(count rate - bkg rate) = e(Ax+B)

limx→∞ (I - bkg rate) = limx→∞ e(Ax+B) = 0

2Yan, Statistics Lecture 3, 3Wolfram Alpha, Least Squares Fitting

μtotal = μcompton + μphotoelectric + μpair production

I = I0e-Ax

I = I0e-Ax = (eB)e-Ax

ssx = σx × n   where n is dataset size
ssy = σy × n

ssxy = Σ(xi - x)×(yi - y)

s = √[ (ssy- A × ssxy) / (n-2) ]
σA = s/√(ssx)



DISCUSSIONS AND CONCLUSIONS:

	 This last major section is dedicated to var-
ious comments needed on the experiment and, 
largely, to our mistakes: where we went wrong. 
I will discuss possible remedies to our mistakes 
and suggestions for future experiments with simi-
lar goals.
	 First, we'll discuss the decision to allow 
the  error for the background to represent the 
error in the counting rate (σbkg = σcounting). To do so, 
we return to Figure 3a, which depics the circuit 
which handles our entire setup. The difference 
between the background and source counting 
measurements was merely the presence of the 
source. The source itself, as discussed in the 
introduction, is inherently random and so cannot 
have a distinguishable error in and of itself. The 
electronics alone are the source of error in our 
measurements for rate. As such, we can assume 
that the presence of the source does not affect 
our error, and that analysis of error excluding it is 
applicable when we do include it.
	 The second point of note is our discrepan-
cy between our expected µ value and our provid-
ed theoretical value. This has a couple implica-
tions.
	 First, it could represent a systemic error 
in our entire system, given that the value arises 
from the fitting of our practically raw data. The 
linear regression is evidently not at fault as our 
Chi-Square value suggests reasonable accuracy.

	 Our next step with this information is to 
compare this to our theory. We expect the pho-
ton energy emitted from Cesium-137 to be 0.662 
MeV, the main photon peak4. We can take known 
theoretical data1 (which also appears in Table [] at 
the end of this report) and collate it, as in Figure 
Seven, to compare our expected photon energy 
and μ value to determine if it matches the model.
	 Figure Seven shows lines for both E = 
0.662 MeV and μ = 1.82 cm-1 ± 0.185 cm-1, which 
ideally would coincide on or close to the line seg-
ments modeled by the data. Unfortunately this 
does not, which doesn't suggest a good agree-
ment with the accepted theoretical data. The rec-
onciliation for why this data doesn't align perfectly 
is discussed further in following section.

Figure 7
Photon energy vs. total absorption coefficient (theoretical)

Figure 7 compares the theoretical data of photon energy 
versus total absorption coefficient and includes the width of 
data in which μ = 1.85 ± 0.185 occupies. Clearly, the theo-
retical data doesn't agree with our theoretical data, which is 
touched on further in DISCUSSIONS AND CONCLUSIONS.

4Wikipedia, Caesium-137

Excluding computational errors, we would still ex-
pect our photon emission energy to fall within the 
relative 'width' of the peak. This data isn't immedi-
ately available, but a rough estimate4 is shown in 
Figure Eight. Unfortunately, our µ value still does 
not fit the theoretical curve with the error provided 
to it.
	 This suggest a more fundamental issue, 
with the candidates for our problems being either 
our electronics and procedure, our early compu-
tations or, less-likely, the theoretical values them-
selves.
	 As such, similar research is suggested to 
reconcile these differences, potentially with more 
data points (thicker slices of lead) or longer spans 
of time with which to measure counting.

Figure 8

Figure 8 includes a 'error' for a theoretical peak photon width 
obtained from the Caesium-137 Wikipedia source.4
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TABLES:

This first set of data is specifically for the dead-
time counting experiment. It involves two sourc-
es, gamma (ɣ) and beta (β) rays, and measures 
their respective rates and dead-times (τ). 

Source counts/time (s-1) 
= rate (s-1) τ (µs)

ɣ 524/11 = 47.6 550

β 568/7 = 81.1 560

ɣ and β 457/11 = 41.5 580

Table 1

Table 2
Note that height is a constant 40mm and voltage 
a constant 800V throughout all the following data 
points. 
For background, we used 841/1613s = 0.521 
from Table 3 because it has the longest time 
duration. 

Mass 
(g)

Area 
(cm2)

Thick-
ness 

(g/cm2)

counts/time(s-1) 
= rate (s-1)

230 59.61 3.86 1023/155 = 6.60

571 59.61 9.58 1032/275 = 3.75

1166 105.9 11.0 1014/412 = 2.46

1850 105.9 17.5 1009/727 = 1.39

2191 105.9 20.7 1016/949 = 1.07

2704 105.9 25.5 1019/1371 = 0.743

2985 105.9 28.2 1026/1613 = 0.636

Table 3

counts/time (s-1) = rate (s-1)

97/159 = 0.610

164/280 = 0.586

227/413 = 0.550

382/727 = 0.525

495/949 = 0.521

723/1371 = 0.527

841/1613 = 0.521

Note that our last datapoint is the one so fre-
quently mentioned as our overall background 
radiation; the rest are used to determine error in 
our counting rate measurements.


