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1 Module 9: Model Selection & Regularization

Two approaches for model selection/hyperparameter tuning:

• 1. Sequential Feature Selection (Greedy)

• 2. Regularization (global optimization)
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1.1 (Forward) Sequential Feature Selection

Algorithm:

• 1. For each feature, fit it individually.

• 2. Pick the best-performing feature and → Φselected set of features

• 3. With the remaining features, fit them each but with a model including
Φselected features

• 4. Continue adding features to Φselected until desired

This is a ”greedy” algorithm: one which makes a series of greedy choice which
are best at a particular moment – not guaranteed to yield the best solution, but is
fast. As such, the result is liable to vary depending on the randomness of the training
indices provided.

# First, create two arrays which encapsulate the indices of the dataset

indices = shuffle( range(0,len(data)) )

training_indices, dev_indices = np.split(indices, [int])
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# Note that 'neg_mean_squared_error' is selected for scoring, as the selector

intends to MAXIMIZE its value↪→

feature_select = SequentialFeatureSelector(estimator = LinearRegression(),

scoring = 'neg_mean_squared_error', cv = [[training_indices, dev_indices]],

n_features_to_select = int)

↪→

↪→

# Display top n features selected

best_features = pd.DataFrame( feature_select.fit_transform(X, y), columns =

feature_select.get_feature_names_out() )↪→

# MAKE SURE when testing MSE to filter the data by the correct indices, e.g.

data = LinearRegression.fit( best_features.iloc[training_indices],

y.iloc[training_indices] ).predict( best_features.iloc[dev_indices])↪→

mean_squared_error(data, y.iloc[dev_indices])

Note REVERSE feature selection: originally fitting with ALL features and re-
moving the worst-performing feature at a time.

1.2 L2 (Ridge) Regularization

An alternate approach for controlling complexity using a complexity parameter: α.
The goal of regularization is to prevent overfitting.

Ridge or L2 Regularization: at a high level, the algorithm minimizes MSE as
usual but penalizes the size of the coefficients by α:

MSE = α(θ21 + θ22 + ...) +
1

n

∑[
yi −

(
d∑

j=1

θjϕi,j + b

)]
(1)

NOTE that this penalization will disproportionately affect features with LOWER
values. Data must be Z-scored.

# Ridge is also a LinearRegression model

# Complexity parameter £\alpha \propto \frac{1}{\theta_i}£ for £\theta_i£

corresponding to the coefficient of each feature. Essentially, increasing

alpha decreases model complexity.

↪→

↪→

lm_model = Ridge(alpha = 100)

lm_model.fit(X, y)
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1.3 Scaling data

Z-score: for each column, subtract the data by its mean and divide by its standard
deviation

ss = StandardScaler()

# Rescale data

rescaled_data = pd.DataFrame( ss.fit_transform(data), columns =

ss.get_feature_names_out() )↪→

1.4 GridSearchCV

Allows for the tuning of hyperparameters automatically!
For example, we can vary α and watch the train/test scores change. There tend

to be a swath of α values where the test score remains roughly the same.

# We start with a standard fitting process such as

model = Pipeline( ('poly', PolynomialFeatures()), ('scaler', StandardScaler()),

('reg', Ridge()) )↪→

# Generate a dictionary of parameters to vary and their respective range

parameters = { 'alpha': np.logspace(0,10,10) }
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from sklearn.model_selection import GridSearchCV

# Use the training/dev indices as before.

gs = GridSearchCV( estimator = model, param_grid = parameters, scoring =

'neg_mean_squared_error', cv = [[training_indices, dev_indices]] )↪→

gs.fit( X, y )

# You can investigate the best_model to find optimal hyperparameters

best_model = gs.best_estimator_

# Generate stats on fitting results/process

gs.cv_results_

"""

NOTE that gs.predict() uses the most RECENT model; not the best one.

Make sure to pull the best model, then predict with that.

"""

1.5 LASSO (L1) Regularization Regression

There are many other methods for penalizing with α:

1

n

∑[
yi −

(
d∑
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θjϕi,j + b

)]
+ ...

• L1 (Lasso): α
∑d

j=1 |θj|

• L2 (Ridge): α
∑d

j=1 θ
2
j

sklearn.linear_model import Lasso

With L1, many coefficients will go to zero. A relatively small number of features
will remain, therefore L1 can be used for feature selection.

1.6 K-fold Cross Validation

Algorithm:

• 1. Define a model and the hyperparameter to be tuned.

• 2. Split dataset into k sets of data.
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• 3. For each set, reserve it as the temporary validation set and use the rest to
train.

• 4. Average the error computed k times.

Leave-one-out uses k = number of data points, meaning that each data point
becomes itself a validation point.

# Set the cv constructor to be the integer k

GridSearchCV( estimator = model, param_grid = parameters, scoring =

'neg_mean_squared_error', cv = k )↪→

1.7 Applications

Quality/variety of data hugely affects the results of a model.
The Bandit problem: balance exploitation (selecting groups with proven track

records) with exploration (selecting underrepresented groups to learn about quality)
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