
Berkeley ML/AI Certification Module 9 Xavier Boluna

1 Module 9: Model Selection & Regularization

Two approaches for model selection/hyperparameter tuning:

• 1. Sequential Feature Selection (Greedy)

• 2. Regularization (global optimization)

Contents

1 Module 9: Model Selection & Regularization 1
1.1 (Forward) Sequential Feature Selection 1
1.2 L2 (Ridge) Regularization . 2
1.3 Scaling data . 3
1.4 GridSearchCV . 3
1.5 LASSO (L1) Regularization Regression 4
1.6 K-fold Cross Validation . 4
1.7 Applications . 5

1.1 (Forward) Sequential Feature Selection

Algorithm:

• 1. For each feature, fit it individually.

• 2. Pick the best-performing feature and → Φselected set of features

• 3. With the remaining features, fit them each but with a model including
Φselected features

• 4. Continue adding features to Φselected until desired

This is a ”greedy” algorithm: one which makes a series of greedy choice which
are best at a particular moment – not guaranteed to yield the best solution, but is
fast. As such, the result is liable to vary depending on the randomness of the training
indices provided.

First, create two arrays which encapsulate the indices of the dataset

indices = shuffle(range(0,len(data)))

training_indices, dev_indices = np.split(indices, [int])

1

Berkeley ML/AI Certification Module 9 Xavier Boluna

Note that 'neg_mean_squared_error' is selected for scoring, as the selector

intends to MAXIMIZE its value↪→

feature_select = SequentialFeatureSelector(estimator = LinearRegression(),

scoring = 'neg_mean_squared_error', cv = [[training_indices, dev_indices]],

n_features_to_select = int)

↪→

↪→

Display top n features selected

best_features = pd.DataFrame(feature_select.fit_transform(X, y), columns =

feature_select.get_feature_names_out())↪→

MAKE SURE when testing MSE to filter the data by the correct indices, e.g.

data = LinearRegression.fit(best_features.iloc[training_indices],

y.iloc[training_indices]).predict(best_features.iloc[dev_indices])↪→

mean_squared_error(data, y.iloc[dev_indices])

Note REVERSE feature selection: originally fitting with ALL features and re-
moving the worst-performing feature at a time.

1.2 L2 (Ridge) Regularization

An alternate approach for controlling complexity using a complexity parameter: α.
The goal of regularization is to prevent overfitting.

Ridge or L2 Regularization: at a high level, the algorithm minimizes MSE as
usual but penalizes the size of the coefficients by α:

MSE = α(θ21 + θ22 + ...) +
1

n

∑[
yi −

(
d∑

j=1

θjϕi,j + b

)]
(1)

NOTE that this penalization will disproportionately affect features with LOWER
values. Data must be Z-scored.

Ridge is also a LinearRegression model

Complexity parameter £\alpha \propto \frac{1}{\theta_i}£ for £\theta_i£

corresponding to the coefficient of each feature. Essentially, increasing

alpha decreases model complexity.

↪→

↪→

lm_model = Ridge(alpha = 100)

lm_model.fit(X, y)

2

Berkeley ML/AI Certification Module 9 Xavier Boluna

1.3 Scaling data

Z-score: for each column, subtract the data by its mean and divide by its standard
deviation

ss = StandardScaler()

Rescale data

rescaled_data = pd.DataFrame(ss.fit_transform(data), columns =

ss.get_feature_names_out())↪→

1.4 GridSearchCV

Allows for the tuning of hyperparameters automatically!
For example, we can vary α and watch the train/test scores change. There tend

to be a swath of α values where the test score remains roughly the same.

We start with a standard fitting process such as

model = Pipeline(('poly', PolynomialFeatures()), ('scaler', StandardScaler()),

('reg', Ridge()))↪→

Generate a dictionary of parameters to vary and their respective range

parameters = { 'alpha': np.logspace(0,10,10) }

3

Berkeley ML/AI Certification Module 9 Xavier Boluna

from sklearn.model_selection import GridSearchCV

Use the training/dev indices as before.

gs = GridSearchCV(estimator = model, param_grid = parameters, scoring =

'neg_mean_squared_error', cv = [[training_indices, dev_indices]])↪→

gs.fit(X, y)

You can investigate the best_model to find optimal hyperparameters

best_model = gs.best_estimator_

Generate stats on fitting results/process

gs.cv_results_

"""

NOTE that gs.predict() uses the most RECENT model; not the best one.

Make sure to pull the best model, then predict with that.

"""

1.5 LASSO (L1) Regularization Regression

There are many other methods for penalizing with α:

1

n

∑[
yi −

(
d∑

j=1

θjϕi,j + b

)]
+ ...

• L1 (Lasso): α
∑d

j=1 |θj|

• L2 (Ridge): α
∑d

j=1 θ
2
j

sklearn.linear_model import Lasso

With L1, many coefficients will go to zero. A relatively small number of features
will remain, therefore L1 can be used for feature selection.

1.6 K-fold Cross Validation

Algorithm:

• 1. Define a model and the hyperparameter to be tuned.

• 2. Split dataset into k sets of data.

4

Berkeley ML/AI Certification Module 9 Xavier Boluna

• 3. For each set, reserve it as the temporary validation set and use the rest to
train.

• 4. Average the error computed k times.

Leave-one-out uses k = number of data points, meaning that each data point
becomes itself a validation point.

Set the cv constructor to be the integer k

GridSearchCV(estimator = model, param_grid = parameters, scoring =

'neg_mean_squared_error', cv = k)↪→

1.7 Applications

Quality/variety of data hugely affects the results of a model.
The Bandit problem: balance exploitation (selecting groups with proven track

records) with exploration (selecting underrepresented groups to learn about quality)

5

