Berkeley ML/AI Certification Module 8 Xavier Boluna

1 Module 8: Feature Engineering

Contents

1 Module 8: Feature Engineering
1.1 Parabolic/Nonlinear Model Fitting
1.2 Prediction vs. Inference L.
1.3 Encoding methods oo

W W = =

1.1 Parabolic/Nonlinear Model Fitting

e 2nd-order model with d features
d d
g = Zeﬂdﬁ + Z@j1¢j +
=1 j=1

e In order to fit a squared regression, we can just square the feature and fit as
linear (.e.g. horsepower? oc mpg)

LinearRegression() .fit(datal[x, x"2], datalyl)

o Sklearn Transformers:

PolynomialFeatures(degree=d,
< include_bias=False).fit_transform([[x]])
return array([[x"1, x"2, ..., x~dl])

where include_bias=True includes z°
So a 1D array of length n will return a 2D array of size d + 1 x n

e Reconstruct the dataframe with

pd.DataFrame (Fitted_PolyFt0Obj, columns =
— Fitted_PolyFt0bj.get_feature_names_out())

e To make a sequence of operations more convenient:

model = sklearn.pipeline.Pipeline([
('transform', PolynomialFeatures()),
('regression',LinearRegression())

D

model.fit(x,y)
model .predict([[x_il])

Berkeley ML/AI Certification Module 8 Xavier Boluna

e Access individual components e.g.

model .named_steps['regression'].coef_

e Model variance encapsulates the model’s sensitivity to the training data (ten-

‘ Winning complexity level

) <= Underfitting / Overfitting ==

Error/variance

Variance

Model ‘complexity’
(e.g., polynomial degree)

dency to overfit)

e Given data with n points, we can find an nth-order model which fits it perfectly

Y = 00 solving for © = i

e Cross-validate model:
Split into train & test data to evaluate MSE independently

e Shuffle data so that location of split is randomized

data = sklearn.utils.shuffle(data)
train, val = numpy.split(data, [n])

e Hyperparameters are the params whih decide between models (e.g. degree)
and uses the validation set of data only

e The test set of data is a third set which evaluates the performance of the
model, separate from the parameter selection bias of the training set & the
hyperparameter bias of the validation set

e Rule of thumb is Train/Val/Test data proportion is 60/20,/20

Berkeley ML/AI Certification Module 8 Xavier Boluna

1.2 Prediction vs. Inference

e Prediction: Fitting a model and sampling predictions from the fitted domain
only. (i.e. a parabolic model predicts that high HP will give lower fuel efficiency,
which is incorrect)

e Inference: Using the model to understand the true relationship of the features.

1.3 Encoding methods
e Variations of one-hot encoding;:

pd.get_dummies(data, dummy_na=False)

Or

ohe = OneHotEncoder(sparse = False, drop='if_binary')
data_train = ohe.fit_transform(data_train)

data_test = ohe.transform(data_test)

Additionally, one can avoid having to take out a column & then re-add it to a
DataFrame by using: (e.g., 'Central Air’ needs one-hot; 'OverallQual’ does not.

col_transformer = make_column_transformer (
(OneHotEncoder(drop = 'if_binary'), ['CentralAir']),
remainder='passthrough')

col_transformer.fit_transform(X_train[['OverallQual', 'CentralAir']])

e Ordinal encoding (e.g. column with values "Poor’; ’Fair’, ’"Good’, "Excellent’
which we want to correspond to 1, 2, 3, 4 respectively)

oe = OrdinalEncoder(categories = [['Poor', 'Fair', 'Good',
s 'Excellent'l])
data = oe.fit_transform(X_train[['Quality']])

e Column transformer can handle multiple encoders just like a pipeline can. The
arguments are tuples which correspond the encoder with a set of input columns.

multi = make_column_transformer (
(OrdinalEncoder (categories = [['Po', 'Fa', 'TA', 'Gd', 'Ex']]),
— ['HeatingQC']),
(OneHotEncoder(drop = 'if_binary'), ['CentralAir']),
(PolynomialFeatures(include_bias = False, degree = 2),
< ['OverallQual']))

multi.fit_transform(X_train[['OverallQual', 'Centraldir', 'HeatingQC']])

