
Berkeley ML/AI Certification Module 6 Xavier Boluna

1 Module 6: Data Clustering & Principal Com-

ponent Analysis

Contents

1 Module 6: Data Clustering & Principal Component Analysis 1
1.1 Unsupervised algorithms . 1
1.2 Performing SVD . 2
1.3 Connecting SVD to PCA . 3
1.4 Performing PCA . 5
1.5 Clustering and K-Means . 6
1.6 Performing KMeans . 7

1.1 Unsupervised algorithms

• K-Means Algorithm for clustering

– Looks for rows that are similar to each other

– Creates groups out of similar rows

• Principal Components Analysis (PCA)

– Looks for columns that are linear combinations of existing columns

– Tries to capture the bulk of variation in the data

1

Berkeley ML/AI Certification Module 6 Xavier Boluna

– e.g. a dataset with F◦ and C◦: want to keep one to reduce dimensionality
because they are already highly correlated
F◦ has wider variation (40◦) than C◦ (25◦), therefore you would want F:
larger spread means more-precise model (assuming both measurements
have equal precision)
That said, largest variance is the data projected onto the line-of-best-fit

– Singular value decomposition X: input data with rows N and columns
(features) D
→ U is the same dimensions as X;

∑
is a diagonal matrix of singular

values; V T is square DxD matrix

• Unsupervised learning: do not make use of output in training data

• Curse of dimensionality: amt of data needed to train a model increases
exponentially with the number of inputs (columns) in order to cover the input
space

1.2 Performing SVD

• For SVD, we need the mean of the data to be at the origin: Normalize data

Xnorm =
X − µ

σ

for µ and σ the mean and std

• Then use SVD on normalized data

Xnorm = UΣV T

2

Berkeley ML/AI Certification Module 6 Xavier Boluna

U, s, Vt = scipy.linalg.svd(X, full matrices = True)
Σ = np.diag(s)
V T = V.T

• Check that the decomposition is correct:
U @ Σ @ V tT where @ = matrix multiplication in python
X == U @ Σ @ V T → np.allclose(X, U @ Σ @ V T)

• We can undo the original normalization (with no loss in precision) by inverting
the formula

X = µ+ σXnorm

µ + σ * pd.DataFrame(U @ Σ @ V T)

1.3 Connecting SVD to PCA

• Σ diagonal entries 1-D are the singular values (weighting) organized from
largest to smallest (σ1 ≥ σ2 ≥ ... ≥ σD)

• V T are the optimal directions for projecting the data; each is a direction in
R(D) (input space) and are each mutually orthogonal

3

Berkeley ML/AI Certification Module 6 Xavier Boluna

• We can select the data by coarseness

X̃D
r =

r∑
i=1

σiuiv
T
i for ui ∈ U and vTi ∈ V T

• We can select a bar for cumulative variance (e.g. 90%+ above) and project the
data onto the lower-dimensional subspace

X̃r
r = X̃D

R Vr = UrΣr

Project X̃D
r to X̃r

r as shown above.

4

Berkeley ML/AI Certification Module 6 Xavier Boluna

1.4 Performing PCA

• As before,
µ = X.mean()
σ = X.std()
Xnorm = X−µ

σ

U, s, Vt = svd(Xnorm, full matrices=True)
Σ = np.diag(s)
V T = Vt.T

• Now we project data to 4 dimensions, for example

X̃r
r = UrΣr

Ur = U[:,:4]
Σr = Σ[:r,:r] X̃r

r = pd.DataFrame(Ur @ Σr)

• What if we need to incorporate new data?: We can project down to the prin-
cipal components we have already computed

X̃r
r = X̃D

r Vr

First, normalize new data and get X̃D
r ; then,

X̃r
r .append(X̃

r
r @ V T [:,:r])

5

Berkeley ML/AI Certification Module 6 Xavier Boluna

1.5 Clustering and K-Means

• Centroids are the mean of a cluster (µ1, µ2); we try to minimize the inertia
(sum of squared distance a.k.a. rotational inertia)

• Algorithm:

– Select initial centroid placement (e.g. normal distribution)

– Assign cluster points with nearest centroid

– Calculate inertia (sum of the squared distance from the points to centroid)

– Move centroids to the middle of their respective clusters

– Iterate.

• We need to select an appropriate amount of centroids, k (between extremes k=1
with maximal inertia, and k=n for number of data points with zero inertia)

6

Berkeley ML/AI Certification Module 6 Xavier Boluna

• Look to find a sharp change in either the Inertia or Percent Difference

1.6 Performing KMeans

• Standard KMeans
km = sklearn.cluster.KMeans(n clusters=5, init=’random’)
km.fit(data)
Label for each datapoint is returned as a label with km.labels

• KMeans++ improves initialization
kmp = sklearn.cluster.KMeans(n cluster=5, init=’k-means++’, verbose=1).fit(data)
First centroid is chosen randomly and the remaining centroids try to space
themselves evenly over the dataset

• DBSCAN Density-Based Spatial Clustering of Applications with Noise
dbs = cluster.DBSCAN(eps=5, min samples=3).fit(data)

– eps = ’radius’

– No cluster parameter: number of cluster arises naturally from algorithm
(do not need to run ensembles; every run is roughly the same)

– Curved boundaries to the cluster (KMeans is convex polygonal bound-
aries)

7

Berkeley ML/AI Certification Module 6 Xavier Boluna

– Outliers are found which are labelled -1 and not included in clustering

– Algorithm:

∗ For each data point, scan a radius of size epsilon – if min samples
points are contained, that point is designated a core point

∗ Join all core points in one cluster

∗ Points that are not core, but have at least one core point in their
epsilon neighborhood, are added to that cluster (if it adjacent to TWO
clusters, one is assigned randomly)

∗ All others are outliers

• Predict class with kmeans object.predict(new data)
Note that DBSCAN cannot predict automatically with sklearn

8

