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1.1 Uniform distributions

e Models situations with just two outcomes (a,b) which are equally probable

e Discrete uniform distribution models n values from low value a to high value b
(e.g. aroll of die n=6, a=1, b=6, p(n)=1/6)

—n=b-a+1

- p(n) =
— Expectation = “T*b

n?—1

— Variance = B

e Continuous uniform distribution (e.g. angle of a clock at any time in the day: a
= 0deg, b = 360deg, all probabilities are equally likely therefore f; [PDF of clock values] =

1)

- p(n) = 5,
— Expectation = “T*b
— Variance = &=

12

1.2 Sampling uniform distributions in Python

e scipy.stats.uniform( loc = [left edge] , scale = [length] )
e.g. dist. from a=10 to b=15 — loc = 10 and scale = 5 *
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.pdf(loc=) to sample likelihood at a point

* e.g. pdf(8) = 0, .pdf(12) = 0.2, .pdf([8,12,15]) = [0,0.2,0.2]
— .mean() * e.g. .mean() = 12.5

— wvar() *e.g. = 2.08

— std() *e.g. = 1.44

— .rvs(size=) : Random variates sampled from dist

* e.g. .rvs()=any vale[10,15] or .rvs(size = 100, density = True) to plot
a histogram with proper scaling using density

1.3 Gaussian (normal) distributions

e Random (often, measurement) error induces small variations around a mean

e Gaussians are parameterized by p mean and o? variance

e Central Limit Theorem — for the mean and variance of a random variable p(X,,)
and J}n, the lim,,_,o ptx, = px (larger n converges to more correct mean) and

2
ag .
0% — ZX (larger n decreases variance)
n n

_(z-p)?
2052

e PDF = \/2;76

1.4 Multivariate distributions

X1
e A collection of random variables X = X2 with joint distribution f,(z1, xa, ...
X,
I
which can be sampled as X — L2
Tn .
E[X4]
e Expectation E[X] = E[X,]
B[X,]

e Law of large numbers fi,, — E[X]asn — oo

2

7$n>
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e Central Limit Theorem remains the same X,, — N(p,,02/n) as n — oo

2 2 2
0-1’1 0-1’2 . Ul,n
. ) ) 9 05,1 Ug,z . O-g,n
e Variance becomes Covariance Matrix Covar[X] = X5 = ) .
2 2 2
Un,l Un,2 Un,n

— Each o still generated from (X — E[X])?

— Entries on the diagonal of the matrix (ail, 0372, etc.) are the variances of
the individual random variables

— The off-diagonal elements are covariances between variables, meaning

2 _ 2 -
014 = 03, for variables X, Xy

— Can estimate covariance of a dataset using the sample covariance Y% =
1 n ~ A NT
o1 it (@ — 1) (@ — miu)

— True (population) covariance X% = E[ (X — E[X])(X — E[X])T Jvi

1.5 Covariance and correlation matrices in Python

e DataFrame.cov()

e DataFrame.corr(): normalizes to ones on the diagonal so it is easier to see
covariances

e sns.pairplot(DataFrame): diagonal plots = correlation scatter plot, off-diagonal
plots = histogram

1.6 Correlation, Conditional Probability & Independence

I pi2 o pin
1 ... n o2
o Corr[X|=3%% = pQ.’l . pQ.’ for p; ; = e € [—1,1]
Pni Pn2 --- 1

e Lack of correlation does not mean that the data does not have a pattern, given
that correlation only evaluates on linearity (uncorrelated, but not independent)
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e Conditional probability: predict on one value when the other values are fixed
(on a scalar or a range)
py(y|X = x) = p’;’;—giy) gives a PDF over values of y (slice of the joint PDF
using X at x)

e Conditional distribution using .histplot(data, x, hue)

e Two random variables are independent when knowing the value of one tells us
nothing about the value of the other
py(ylX = x1) = py(y|X = x2) = py(y); as such, the joint distribution

pxy(z,y) = px(@)py (y)



