1 Module 2: Fundamentals of ML

Contents

1	Mo	dule 2: Fundamentals of ML	1
	1.1	Uniform distributions	1
	1.2	Sampling uniform distributions in Python	1
	1.3	Gaussian (normal) distributions	2
	1.4	Multivariate distributions	2
	1.5	Covariance and correlation matrices in Python	3
	1.6	Correlation, Conditional Probability & Independence	3

1.1 Uniform distributions

- Models situations with just two outcomes (a,b) which are equally probable
- Discrete uniform distribution models n values from low value a to high value b (e.g. a roll of die n=6, a=1, b=6, p(n)=1/6)
 - -n = b a + 1
 - $p(n) = \frac{1}{n}$

- Expectation =
$$\frac{a+b}{2}$$

- Variance =
$$\frac{n^2-1}{12}$$

• Continuous uniform distribution (e.g. angle of a clock at any time in the day: a = 0 deg, b = 360 deg, all probabilities are equally likely therefore $\int_a^b [\text{PDF of clock values}] = 1$)

$$- p(n) = \frac{1}{b-a}$$
$$- \text{Expectation} = \frac{a+b}{2}$$
$$- \text{Variance} = \frac{(b-a)^2}{12}$$

1.2 Sampling uniform distributions in Python

• scipy.stats.uniform (loc = [left edge] , scale = [length]) e.g. dist. from a=10 to b=15 \rightarrow loc = 10 and scale = 5 *

- .pdf(loc=) to sample likelihood at a point
 * e.g. .pdf(8) = 0, .pdf(12) = 0.2, .pdf([8,12,15]) = [0,0.2,0.2]
 .mean() * e.g. .mean() = 12.5
 .var() * e.g. = 2.08
- .std() * e.g. = 1.44
- .rvs(size=) : Random variates sampled from dist
 - * e.g. .rvs()=any val \in [10,15] or .rvs(size = 100, density = True) to plot a histogram with proper scaling using density

1.3 Gaussian (normal) distributions

- Random (often, measurement) error induces small variations around a mean
- Gaussians are parameterized by μ mean and σ^2 variance
- Central Limit Theorem for the mean and variance of a random variable $\mu(\bar{X}_n)$ and $\sigma_{\bar{X}_n}^2$, the $\lim_{n\to\infty} \mu_{\bar{X}_n} = \mu_X$ (larger n converges to more correct mean) and $\sigma_{\bar{X}_n}^2 \to \frac{\sigma_X^2}{n}$ (larger n decreases variance)

• PDF =
$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

1.4 Multivariate distributions

- A collection of random variables $X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$ with joint distribution $f_x(x_1, x_2, ..., x_n)$ which can be sampled as $X \rightarrow \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ • Expectation $E[X] = \begin{bmatrix} E[X_1] \\ E[X_2] \\ \vdots \\ E[X_n] \end{bmatrix}$
- Law of large numbers $\mu_n \to E[X]asn \to \infty$

• Central Limit Theorem remains the same $\bar{X_n} \to N(\mu_x, \sigma_x^2/n)$ as $n \to \infty$

Module 2

• Variance becomes Covariance Matrix
$$Covar[X] = \Sigma_X^2 = \begin{bmatrix} \sigma_{1,1}^2 & \sigma_{1,2}^2 & \dots & \sigma_{1,n}^2 \\ \sigma_{2,1}^2 & \sigma_{2,2}^2 & \dots & \sigma_{2,n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n,1}^2 & \sigma_{n,2}^2 & \dots & \sigma_{n,n}^2 \end{bmatrix}$$

- Each σ^2 still generated from $(X E[X])^2$
- Entries on the diagonal of the matrix $(\sigma_{1,1}^2, \sigma_{2,2}^2, etc.)$ are the variances of the individual random variables
- The off-diagonal elements are covariances between variables, meaning $\sigma_{1,2}^2 = \sigma_{2,1}^2$ for variables X_1, X_2
- Can estimate covariance of a dataset using the sample covariance $\hat{\Sigma}_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{\mu}) (x_i \hat{mu})^T$
- True (population) covariance $\Sigma_X^2 = E[(X E[X])(X E[X])^T]$ vi

1.5 Covariance and correlation matrices in Python

- DataFrame.cov()
- DataFrame.corr(): normalizes to ones on the diagonal so it is easier to see covariances
- sns.pairplot(DataFrame): diagonal plots = correlation scatter plot, off-diagonal plots = histogram

1.6 Correlation, Conditional Probability & Independence

•
$$Corr[X] = \Sigma_X^2 = \begin{bmatrix} 1 & \rho_{1,2} & \dots & \rho_{1,n} \\ \rho_{2,1} & 1 & \dots & \rho_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n,1} & \rho_{n,2} & \dots & 1 \end{bmatrix}$$
 for $\rho_{i,j} = \frac{\sigma_{i,j}^2}{\sigma_i \sigma_j} \in [-1,1]$

• Lack of correlation does not mean that the data does not have a pattern, given that correlation only evaluates on linearity (uncorrelated, but not independent)

• Conditional probability: predict on one value when the other values are fixed (on a scalar or a range)

 $p_Y(y|X = x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$ gives a PDF over values of y (slice of the joint PDF using X at x)

- Conditional distribution using .histplot(data, x, hue)
- Two random variables are independent when knowing the value of one tells us nothing about the value of the other $p_Y(y|X = x_1) = p_Y(y|X = x_2) = p_Y(y)$; as such, the joint distribution $p_{X,Y}(x,y) = p_X(x)p_Y(y)$