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1.1 Uniform distributions

• Models situations with just two outcomes (a,b) which are equally probable

• Discrete uniform distribution models n values from low value a to high value b
(e.g. a roll of die n=6, a=1, b=6, p(n)=1/6 )

– n = b - a + 1

– p(n) = 1
n

– Expectation = a+b
2

– Variance = n2−1
12

• Continuous uniform distribution (e.g. angle of a clock at any time in the day: a

= 0deg, b = 360deg, all probabilities are equally likely therefore
∫ b

a
[PDF of clock values] =

1)

– p(n) = 1
b−a

– Expectation = a+b
2

– Variance = (b−a)2

12

1.2 Sampling uniform distributions in Python

• scipy.stats.uniform( loc = [left edge] , scale = [length] )

e.g. dist. from a=10 to b=15 → loc = 10 and scale = 5 *
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– .pdf(loc=) to sample likelihood at a point

* e.g. .pdf(8) = 0, .pdf(12) = 0.2, .pdf([8,12,15]) = [0,0.2,0.2]

– .mean() * e.g. .mean() = 12.5

– .var() * e.g. = 2.08

– .std() * e.g. = 1.44

– .rvs(size=) : Random variates sampled from dist

* e.g. .rvs()=any val∈[10,15] or .rvs(size = 100, density = True) to plot
a histogram with proper scaling using density

1.3 Gaussian (normal) distributions

• Random (often, measurement) error induces small variations around a mean

• Gaussians are parameterized by µ mean and σ2 variance

• Central Limit Theorem – for the mean and variance of a random variable µ(X̄n)
and σ2

X̄n
, the limn→∞ µX̄n

= µX (larger n converges to more correct mean) and

σ2
X̄n

→ σ2
X

n
(larger n decreases variance)

• PDF = 1√
2πσ2

e−
(x−µ)2

2σ2

1.4 Multivariate distributions

• A collection of random variablesX =


X1

X2

...
Xn

 with joint distribution fx(x1, x2, ..., xn)

which can be sampled as X →


x1

x2

...
xn



• Expectation E[X] =


E[X1]
E[X2]
...

E[Xn]


• Law of large numbers µ̄n → E[X]asn → ∞
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• Central Limit Theorem remains the same X̄n → N(µx, σ
2
x/n) as n → ∞

• Variance becomes Covariance Matrix Covar[X] = Σ2
X =


σ2
1,1 σ2

1,2 . . . σ2
1,n

σ2
2,1 σ2

2,2 . . . σ2
2,n

...
...

. . .
...

σ2
n,1 σ2

n,2 . . . σ2
n,n


– Each σ2 still generated from (X − E[X])2

– Entries on the diagonal of the matrix (σ2
1,1, σ

2
2,2, etc.) are the variances of

the individual random variables

– The off-diagonal elements are covariances between variables, meaning
σ2
1,2 = σ2

2,1 for variables X1, X2

– Can estimate covariance of a dataset using the sample covariance Σ̂2
X =

1
n−1

∑n
i=1(xi − µ̂)(xi − m̂u)T

– True (population) covariance Σ2
X = E[ (X − E[X])(X − E[X])T ]vi

1.5 Covariance and correlation matrices in Python

• DataFrame.cov()

• DataFrame.corr(): normalizes to ones on the diagonal so it is easier to see
covariances

• sns.pairplot(DataFrame): diagonal plots = correlation scatter plot, off-diagonal
plots = histogram

1.6 Correlation, Conditional Probability & Independence

• Corr[X] = Σ2
X =


1 ρ1,2 . . . ρ1,n
ρ2,1 1 . . . ρ2,n
...

...
. . .

...
ρn,1 ρn,2 . . . 1

 for ρi,j =
σ2
i,j

σiσj
∈ [−1, 1]

• Lack of correlation does not mean that the data does not have a pattern, given
that correlation only evaluates on linearity (uncorrelated, but not independent)
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• Conditional probability: predict on one value when the other values are fixed
(on a scalar or a range)

pY (y|X = x) =
pX,Y (x,y)

pX(x)
gives a PDF over values of y (slice of the joint PDF

using X at x)

• Conditional distribution using .histplot(data, x, hue)

• Two random variables are independent when knowing the value of one tells us
nothing about the value of the other
pY (y|X = x1) = pY (y|X = x2) = pY (y); as such, the joint distribution
pX,Y (x, y) = pX(x)pY (y)
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