Berkeley ML/AI Certification Module 15 Xavier Boluna

1 Module 15: Gradient Descent Optimization

Contents

(1 Module 15: Gradient Descent Optimization|
(.1 1D Gradient Descentl
[1.1.1 Linear Regression example]
(1.1.2 Convexity|
(1.2 2D minimization for Linear Regression|

AW W NN~ —

1.1 1D Gradient Descent

Gradient descent works on any arbitrary function/surface, to find its minimum.
In 1D, for some learning rate a:

x(t+1) — I(t) —a— (l‘)

1.1.1 Linear Regression example

For example, taking themean squared error + SN (@i — yi)? of some linear model
y = 0-x. Note, we are optimizing the parameter for #, not x. Therefore, the function
we optimize (derivative of MSE) is 4 = 1 va 2-(9; —yi) - .

The mathematical representation for optimizing 6 is then

oD =) — o — LY, X,)

for a loss function L with the dataset X and the model g.
In Scipy and Sklearn, fitting is performed using gradient descent because the amt.
of data is much smaller.

function = lambda x: (x"4 - 15x°3 + 80x"2 - 180x + 144) / 10
x = np.linspace(l, 6.75, 200)

from scipy.optimize import minimize

minimize (function, x0 = 6)

xz0 ts the starting location. For the above function, for example,
minimize (function, x0 = 6) != minimize(function, x0 = 1)

Berkeley ML/AI Certification Module 15 Xavier Boluna

1.1.2 Convexity
Defined by the inequality formula

t-fla)+ (1 —=t)-fo) < ft-a+(1—1)-b)
for all a,b € D(f) and ¢ € [0, 1]

This means:

m |f aline is drawn between
600 two points on the curve,
all values on the curve
must be on or below the
line

MSE

400

Loss

B The MSE loss function
IS convex

200

-20 -10 0 10 20

The 1-dimensional MSE function is always convex.

1.2 2D minimization for Linear Regression

In the case of fitting a linear regression, the second parameter is the intercept: y =
by +01-x

With linear regressions, we can fit without intercept by introducing a bias column
of 1s and fitting it. The bias column will represent the intercept which can be fit.

X has X["data"]
X["bias"] = 1
Therefore X = [[1,data_1], [1,data_2], etc.]

model = LinearRegression(fit_intercept=False)

model.fit(X,y)

model.coef_ # --> returns a tuple e.g. (0.9, 0.1) = £(\theta_0, \theta_1)£
In which case we know that 0.9 is the intercept

Predict with

\theta_0 * X.iloc[:,0] + \theta_1l * X.iloc[:,1]
OR

X @ np.array([\theta_0, \theta_1])

Berkeley ML/AI Certification Module 15 Xavier Boluna

1.3 Multidimensional Gradient Descent

In 2D, our derivative will be 2D; e.g.

arbitrary functionf (6o, 6,) = 863 + 3600,

Codf df + [1660 + 36, (1)
Vil = Gt ey = [30
As such, with p+1 variables, the gradient is
#Zﬁlo(f)
~ o df . df - 2. (f)
Vif(0) d_OOZ + d_91‘7 :
L(f)

To be used with the gradient descent algorithm

g — aVL(0, X, §)

1.4 Stochastic Gradient Descent

If the dataset is large, then computing the gradient is computationally expensive.
Instead, compute on successive subsets of the dataset which only technically approx-
imate the gradient (i.e. SGD is not globally optimal; not the most efficient), but are
far less expensive.

Gradient Descent

1 n
oD < 9 — p(r) - > VoLi(0)

=l 9=0(7)
vs. Stochastic Gradient Descent
1B
oY) < 9 — (1) = Z VoLi(0)
i€B 6=0(7)

Essentially, we don’t compute the full loss surface per iteration; instead, we com-
pute a subset and allow successive iterations to converge towards the solution.

Berkeley ML/AI Certification Module 15 Xavier Boluna

1.5 Double Descent (Implicit Regularization)

Increasing model complexity well beyond the initial test error minimum may eventu-
ally slowly descend in test error again. Specifically, this occurs when training error
is 0 ("Modern Interpolating Regime”).

DOUBLE DESCENT

Overparameterized

Underparameterized

Test risk

ﬁ ‘Modern'
= interpolating regime
\ - - - :
~ _Trainingrisk :
~ > Interpolation threshold
— — _._ _________
Capacity of H
S ceadings of th National Academy of Soences, (Z019) 116,dot 10.1073/prse 1903070116,
where ” Capacity of H” == Model Complexity and ”Risk” == "Error”

In lieu of formal mathematical definitions, allow
model risk = ¢ + (model bias?) + model variance

This rule works to some effect from large neural nets to even simplistic linear
regressions (with high polynomial number). It is more pronounced in very large
neural nets.

Berkeley ML/AI Certification Module 15 Xavier Boluna

TRAINING AND TEST ERROR

B Training error
= Test error

0.8

Error
0.4
|
{

0.2

0.0

50 100 200
Degrees of freedom

N —
W
Y
o
N
o

Alternatively, there may just be another minima (not necessarily better than the
first), such as with this example which a Spline Linear Regression fitted with 20 data
points (degrees of freedom — polynomial order of linear regression).

In this example with a DNN, the expected solution lies in the classical regime
(highlighted blue). But the most optimal answer is in the regime where the com-
plexity is much larger.

08 1 —o— Risk
07 4 —o— Bijas?
—=Variance

0.6

0.5

03 4

0.2

Risk/Bias2/Variance

0.1 4

0.0

DNN width

Source: Zitang Yang et al. (2020). Reth Bias-Variance Trade-off for Ceneralizatian of Neurs! Netwarks.

So modern practice uses gigantic neural networks with number of parameters >>
available data.

WHY?: Active topic of research but — after the complexity > number of data
points, there are an infinite number of solutions with 0 training error. As such, the
fitting method — as in, Stochastic Gradient Descent — experimentally ”chooses” the

Berkeley ML/AI Certification Module 15 Xavier Boluna

optimal model with 0 training error. This solution is implicitly reqularized i.e. there
is no explicit regularization penalty.
2021 Barrett Paper on the subject: https://arxiv.org/abs/2009.11162

https://arxiv.org/abs/2009.11162

	Module 15: Gradient Descent Optimization
	1D Gradient Descent
	Linear Regression example
	Convexity

	2D minimization for Linear Regression
	Multidimensional Gradient Descent
	Stochastic Gradient Descent
	Double Descent (Implicit Regularization)

