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1.1 1D Gradient Descent

Gradient descent works on any arbitrary function/surface, to find its minimum.
In 1D, for some learning rate a:

x(t+1) — I(t) —a— (l‘)

1.1.1 Linear Regression example

For example, taking themean squared error + SN (@i — yi)? of some linear model
y = 0-x. Note, we are optimizing the parameter for #, not x. Therefore, the function
we optimize (derivative of MSE) is 4 = 1 va 2-(9; —yi) - .

The mathematical representation for optimizing 6 is then

oD =) — o — LY, X, )

for a loss function L with the dataset X and the model g.
In Scipy and Sklearn, fitting is performed using gradient descent because the amt.
of data is much smaller.

function = lambda x: (x"4 - 15x°3 + 80x"2 - 180x + 144) / 10
x = np.linspace(l, 6.75, 200)

from scipy.optimize import minimize

minimize (function, x0 = 6)

# xz0 ts the starting location. For the above function, for example,
minimize (function, x0 = 6) != minimize(function, x0 = 1)
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1.1.2 Convexity
Defined by the inequality formula

t-fla)+ (1 —=t)-fo) < ft-a+(1—1)-b)
for all a,b € D(f) and ¢ € [0, 1]

This means:

m |f aline is drawn between
600 two points on the curve,
all values on the curve
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The 1-dimensional MSE function is always convex.

1.2 2D minimization for Linear Regression

In the case of fitting a linear regression, the second parameter is the intercept: y =
by +01-x

With linear regressions, we can fit without intercept by introducing a bias column
of 1s and fitting it. The bias column will represent the intercept which can be fit.

# X has X["data"]
X["bias"] = 1
# Therefore X = [[1,data_1], [1,data_2], etc.]

model = LinearRegression(fit_intercept=False)

model.fit(X,y)

model.coef_ # --> returns a tuple e.g. (0.9, 0.1) = £(\theta_0, \theta_1)£
# In which case we know that 0.9 is the intercept

# Predict with

\theta_0 * X.iloc[:,0] + \theta_1l * X.iloc[:,1]
# OR

X @ np.array([\theta_0, \theta_1])
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1.3 Multidimensional Gradient Descent

In 2D, our derivative will be 2D; e.g.

arbitrary functionf (6o, 6,) = 863 + 3600,

Codf df + [ 1660 + 36, (1)
Vil = Gt ey = [ 30
As such, with p+1 variables, the gradient is
#Zﬁlo(f)
~ o df . df - 2. (f)
Vif(0) d_OOZ + d_91‘7 :
L(f)

To be used with the gradient descent algorithm

g — aVL(0, X, §)

1.4 Stochastic Gradient Descent

If the dataset is large, then computing the gradient is computationally expensive.
Instead, compute on successive subsets of the dataset which only technically approx-
imate the gradient (i.e. SGD is not globally optimal; not the most efficient), but are
far less expensive.

Gradient Descent

1 n
oD < 9 — p(r) - > VoLi(0)

=l 9=0(7)
vs. Stochastic Gradient Descent
1B
oY) < 9 — (1) = Z VoLi(0)
i€B 6=0(7)

Essentially, we don’t compute the full loss surface per iteration; instead, we com-
pute a subset and allow successive iterations to converge towards the solution.



Berkeley ML/AI Certification Module 15 Xavier Boluna

1.5 Double Descent (Implicit Regularization)

Increasing model complexity well beyond the initial test error minimum may eventu-
ally slowly descend in test error again. Specifically, this occurs when training error
is 0 ("Modern Interpolating Regime”).

DOUBLE DESCENT

Overparameterized

Underparameterized

Test risk

ﬁ ‘Modern'
= interpolating regime
\ - - - :
~ _Trainingrisk :
~ > Interpolation threshold
— — _._ _________
Capacity of H
S ceadings of th National Academy of Soences, (Z019) 116,dot 10.1073/prse 1903070116,
where ” Capacity of H” == Model Complexity and ”Risk” == "Error”

In lieu of formal mathematical definitions, allow
model risk = ¢ + (model bias?) + model variance

This rule works to some effect from large neural nets to even simplistic linear
regressions (with high polynomial number). It is more pronounced in very large
neural nets.
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TRAINING AND TEST ERROR
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Alternatively, there may just be another minima (not necessarily better than the
first), such as with this example which a Spline Linear Regression fitted with 20 data
points (degrees of freedom — polynomial order of linear regression).

In this example with a DNN, the expected solution lies in the classical regime
(highlighted blue). But the most optimal answer is in the regime where the com-
plexity is much larger.
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Source: Zitang Yang et al. (2020). Reth Bias-Variance Trade-off for Ceneralizatian of Neurs! Netwarks.

So modern practice uses gigantic neural networks with number of parameters >>
available data.

WHY?: Active topic of research but — after the complexity > number of data
points, there are an infinite number of solutions with 0 training error. As such, the
fitting method — as in, Stochastic Gradient Descent — experimentally ”chooses” the
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optimal model with 0 training error. This solution is implicitly reqularized i.e. there
is no explicit regularization penalty.
2021 Barrett Paper on the subject: https://arxiv.org/abs/2009.11162


https://arxiv.org/abs/2009.11162
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