
Berkeley ML/AI Certification Module 15 Xavier Boluna

1 Module 15: Gradient Descent Optimization

Contents

1 Module 15: Gradient Descent Optimization 1
1.1 1D Gradient Descent . 1

1.1.1 Linear Regression example . 1
1.1.2 Convexity . 2

1.2 2D minimization for Linear Regression 2
1.3 Multidimensional Gradient Descent 3
1.4 Stochastic Gradient Descent . 3
1.5 Double Descent (Implicit Regularization) 4

1.1 1D Gradient Descent

Gradient descent works on any arbitrary function/surface, to find its minimum.
In 1D, for some learning rate α:

x(t+1) = x(t) − α
d

dx
f(x)

1.1.1 Linear Regression example

For example, taking themean squared error 1
N

∑N
i (ŷi − yi)

2 of some linear model
ŷ = θ ·x. Note, we are optimizing the parameter for θ, not x. Therefore, the function
we optimize (derivative of MSE) is d

dθ
= 1

N

∑N
i 2 · (ŷi − yi) · x.

The mathematical representation for optimizing θ is then

θ(t+1) = θ(t) − α
d

dθ
L(θ(t),X, ŷ)

for a loss function L with the dataset X and the model ŷ.
In Scipy and Sklearn, fitting is performed using gradient descent because the amt.

of data is much smaller.

function = lambda x: (x^4 - 15x^3 + 80x^2 - 180x + 144) / 10

x = np.linspace(1, 6.75, 200)

from scipy.optimize import minimize

minimize(function, x0 = 6)

x0 is the starting location. For the above function, for example,

minimize(function, x0 = 6) != minimize(function, x0 = 1)

1

Berkeley ML/AI Certification Module 15 Xavier Boluna

1.1.2 Convexity

Defined by the inequality formula

t · f(a) + (1− t) · f(b) ≤ f(t · a+ (1− t) · b)

for all a, b ∈ D(f) and t ∈ [0, 1]

The 1-dimensional MSE function is always convex.

1.2 2D minimization for Linear Regression

In the case of fitting a linear regression, the second parameter is the intercept: ŷ =
θ0 + θ1 · x

With linear regressions, we can fit without intercept by introducing a bias column
of 1s and fitting it. The bias column will represent the intercept which can be fit.

X has X["data"]

X["bias"] = 1

Therefore X = [[1,data_1], [1,data_2], etc.]

model = LinearRegression(fit_intercept=False)

model.fit(X,y)

model.coef_ # --> returns a tuple e.g. (0.9, 0.1) = £(\theta_0,\theta_1)£

In which case we know that 0.9 is the intercept

Predict with

\theta_0 * X.iloc[:,0] + \theta_1 * X.iloc[:,1]

OR

X @ np.array([\theta_0, \theta_1])

2

Berkeley ML/AI Certification Module 15 Xavier Boluna

1.3 Multidimensional Gradient Descent

In 2D, our derivative will be 2D; e.g.

arbitrary functionf(θ0, θ1) = 8θ20 + 3θ0θ1

∇θ⃗f =
df

dθ0
î+

df

dθ1
ĵ =

[
16θ0 + 3θ1

3θ0

]
(1)

As such, with p+1 variables, the gradient is

∇θ⃗f(θ⃗) =
df

dθ0
î+

df

dθ1
ĵ =


d

dθ0
(f)

d
dθ1

(f)
...

d
dθp

(f)


To be used with the gradient descent algorithm

θ⃗(t+1) − α∇θ⃗L(θ⃗,X, y⃗)

1.4 Stochastic Gradient Descent

If the dataset is large, then computing the gradient is computationally expensive.
Instead, compute on successive subsets of the dataset which only technically approx-
imate the gradient (i.e. SGD is not globally optimal; not the most efficient), but are
far less expensive.

Gradient Descent

θ(τ+1) ← θ(τ) − ρ(τ)

 1

n

n∑
i=1τ

∇θLi(θ)

∣∣∣∣∣
θ=θ(τ)


vs. Stochastic Gradient Descent

θ(τ+1) ← θ(τ) − ρ(τ)

 1

B

B∑
i∈B

∇θLi(θ)

∣∣∣∣∣
θ=θ(τ)


Essentially, we don’t compute the full loss surface per iteration; instead, we com-

pute a subset and allow successive iterations to converge towards the solution.

3

Berkeley ML/AI Certification Module 15 Xavier Boluna

1.5 Double Descent (Implicit Regularization)

Increasing model complexity well beyond the initial test error minimum may eventu-
ally slowly descend in test error again. Specifically, this occurs when training error
is 0 (”Modern Interpolating Regime”).

where ”Capacity of H” == Model Complexity and ”Risk” == ”Error”
In lieu of formal mathematical definitions, allow

model risk = σ2 + (model bias2) + model variance

This rule works to some effect from large neural nets to even simplistic linear
regressions (with high polynomial number). It is more pronounced in very large
neural nets.

4

Berkeley ML/AI Certification Module 15 Xavier Boluna

Alternatively, there may just be another minima (not necessarily better than the
first), such as with this example which a Spline Linear Regression fitted with 20 data
points (degrees of freedom → polynomial order of linear regression).

In this example with a DNN, the expected solution lies in the classical regime
(highlighted blue). But the most optimal answer is in the regime where the com-
plexity is much larger.

So modern practice uses gigantic neural networks with number of parameters >>
available data.

WHY?: Active topic of research but – after the complexity > number of data
points, there are an infinite number of solutions with 0 training error. As such, the
fitting method – as in, Stochastic Gradient Descent – experimentally ”chooses” the

5

Berkeley ML/AI Certification Module 15 Xavier Boluna

optimal model with 0 training error. This solution is implicitly regularized i.e. there
is no explicit regularization penalty.

2021 Barrett Paper on the subject: https://arxiv.org/abs/2009.11162

6

https://arxiv.org/abs/2009.11162

	Module 15: Gradient Descent Optimization
	1D Gradient Descent
	Linear Regression example
	Convexity

	2D minimization for Linear Regression
	Multidimensional Gradient Descent
	Stochastic Gradient Descent
	Double Descent (Implicit Regularization)

