Berkeley ML/AI Certification Module 14 Xavier Boluna

1 Module 14: Decision Trees

Contents

1 Module 14: Decision Trees 1
1.1 Basics 1
1.2 Entropy 2
1.3 Overfitting 3
1.4 Bagging e 3

1.1 Basics

Decision trees benefit from...
e being very interpretable
e require much less training data
e capable of intaking categorical data
e handle collinearity well

Composition

Root node: beginning of tree

Internal nodes: can be split further (2 or more branches)

Leaf nodes: can no longer be split

Impure nodes: leaf nodes which do not encapsulate a single class (have multiple
classes w/i)

Algorithm

Determine root node

Calculate class entropy

Calculate entropy for each attribute after split
Calculate information gain from each split
Perform splits until decision tree is complete

Assess accuracy of decision tree

Berkeley ML/AI Certification Module 14 Xavier Boluna

Is petal_width < 0.75 and
petal_length < 2?

Yes - ”s
= P . B . S N
Is petal_width < 1.55 and %0 . o ,pe;':,;sa
petal_length < 4.95? £ ' o s versicolor
= 1.5 L « wvirginica
__ h
, 210
Is petal_width < 1.65 or @
petal_length = 4.95? 0.5 -
UO ..ll-l:ult
Is petal_length < 2 4 6
Spe g g;.?g = petal_length
No -
from sklearn import tree
model = tree.DecisionTreeClassifier(criterion = 'entropy')

model.fit (X, y)

Visualize tree thru sklearn

tree.plot_tree(model, feature_names = list, class_names = list, rounded =
< True, filled = True)

Viz thru Graphviz

import graphviz

data = tree.export_graphviz(model, out_file = None, feature_names = list,
< class_names = list, rounded = True, filled = True)

graph = graphviz.Source(data)

graph.render(format = 'png', filename = 'iris_tree')

1.2 Entropy
S=- ZPclngpc

for proportion of each class c: p,.
Entropy cases:
—1log,1 = 0: All data in node is part of same class
—0.5log,0.5 — 0.5log,0.5 = 1: Data is evenly split between two classes

Berkeley ML/AI Certification Module 14 Xavier Boluna

3 x —0.33log,0.33 = 1.58: Evenly split between three classes
... C'x —%logy& =log,C: Evenly split between C classes

Weighted Entropy: entropy x fraction of samples in that node, s.t. weighted
entropy decreases at each level

We use weighted entropy to decide which split to use — we want the highest change
in weighted entropy.

1.3 Overfitting

For decision trees, more features # overfitting
To avoid overfitting, restrict decision tree complexity. Prevent (unnecessary)

growth
e Disallow splitting after a sample threshold i.e. 1% using min_sample_split
e Cap node depth using max_depth
e Do not create splits where weighted entropy is too small i.e. WS < 0.01

Pruning: Allow tree to grow & cut branches afterward
e Use validation set to prune — run model with & without branch

1.4 Bagging

Especially with ”black box” estimators, one can draw “random” subsets of the
dataset, fit them individually, and return an aggregate (either by voting or aver-
aging) final prediction which can reduce variance substantially.

from sklearn.ensemble import BaggingRegressor

BaggingRegressor(estimator = e.g. DecisionTreeClassifier,
n_estimators:int (default = 10) # Number of base estimators in ensemble
max_samples:int/float, max_features:int/float
Number of samples/features to draw from X
bootstrap:bool # For samples, whether they are drawn with replacement;
Bagging ts with replacement (default)
Pasting is drawing random subsets of the samples
bootstrap_features:bool #Same principle with features

