
Berkeley ML/AI Certification Module 14 Xavier Boluna

1 Module 14: Decision Trees

Contents

1 Module 14: Decision Trees 1
1.1 Basics . 1
1.2 Entropy . 2
1.3 Overfitting . 3
1.4 Bagging . 3

1.1 Basics

Decision trees benefit from...
• being very interpretable

• require much less training data

• capable of intaking categorical data

• handle collinearity well

Composition
Root node: beginning of tree
Internal nodes: can be split further (2 or more branches)
Leaf nodes: can no longer be split
Impure nodes: leaf nodes which do not encapsulate a single class (have multiple
classes w/i)

Algorithm
• Determine root node

• Calculate class entropy

• Calculate entropy for each attribute after split

• Calculate information gain from each split

• Perform splits until decision tree is complete

• Assess accuracy of decision tree

1

Berkeley ML/AI Certification Module 14 Xavier Boluna

from sklearn import tree

model = tree.DecisionTreeClassifier(criterion = 'entropy')

model.fit(X, y)

Visualize tree thru sklearn

tree.plot_tree(model, feature_names = list, class_names = list, rounded =

True, filled = True)↪→

Viz thru Graphviz

import graphviz

data = tree.export_graphviz(model, out_file = None, feature_names = list,

class_names = list, rounded = True, filled = True)↪→

graph = graphviz.Source(data)

graph.render(format = 'png', filename = 'iris_tree')

1.2 Entropy

S = −
∑
c

pclog2pc

for proportion of each class c: pc
Entropy cases:
−1log21 = 0: All data in node is part of same class
−0.5log20.5− 0.5log20.5 = 1: Data is evenly split between two classes

2

Berkeley ML/AI Certification Module 14 Xavier Boluna

3×−0.33log20.33 = 1.58: Evenly split between three classes
... C ×− 1

C
log2

1
C
= log2C: Evenly split between C classes

Weighted Entropy: entropy × fraction of samples in that node, s.t. weighted
entropy decreases at each level

We use weighted entropy to decide which split to use – we want the highest change
in weighted entropy.

1.3 Overfitting

For decision trees, more features ̸= overfitting
To avoid overfitting, restrict decision tree complexity. Prevent (unnecessary)

growth
• Disallow splitting after a sample threshold i.e. ¡1% using min sample split

• Cap node depth using max depth

• Do not create splits where weighted entropy is too small i.e. δWS < 0.01

Pruning: Allow tree to grow & cut branches afterward
• Use validation set to prune – run model with & without branch

1.4 Bagging

Especially with ”black box” estimators, one can draw ”random” subsets of the
dataset, fit them individually, and return an aggregate (either by voting or aver-
aging) final prediction which can reduce variance substantially.

from sklearn.ensemble import BaggingRegressor

BaggingRegressor(estimator = e.g. DecisionTreeClassifier,

n_estimators:int (default = 10) # Number of base estimators in ensemble

max_samples:int/float, max_features:int/float

Number of samples/features to draw from X

bootstrap:bool # For samples, whether they are drawn with replacement;

Bagging is with replacement (default)

Pasting is drawing random subsets of the samples

bootstrap_features:bool #Same principle with features

)

3

