
Berkeley ML/AI Certification Module 10 Xavier Boluna

1 Module 10: Time Series and Forecasting

Contents

1 Module 10: Time Series and Forecasting 1
1.1 The Forecasting Problem . 1
1.2 The Stochastic Process . 2
1.3 Autocorrelations using statsmodel . 3
1.4 Programming the Time Series Decomposition 5
1.5 The ARMA Framework . 8

1.1 The Forecasting Problem

Given some existing time-series data, try to forecast trends which will occur in the
future. The modelling may be context-agnostic (i.e. 100 yrs of data collected yearly
== 100 seconds of data collected per-second)

Methodology:

• 1. Collect historical data

• 2. Train a model

• 3. Use the model to make a forecast

• 4. Evaluate the performance of the model on updated data

Notation:

• Value at time t: yt

• Historical data: yt−h:t = [yt−h+1, yt−h+2, . . . , yt]

• Forecast: ŷt:t+f = [ŷt+1, ŷt+2, . . . , ŷt+f]

• Future data: yt:t+f = [yt+1, yt+2, . . . , yt+f]

• Forecast error: et = yt:t+f − ŷt:t+f

et is an array, so we reduce it to a minimizeable number:

• MAE: ||et||1 =
∑t+f

τ=t+1 |e(τ)|

• RMSE: ||et||2 =
√

1
f

∑t+f
τ=t+1 e(τ)

2

1

Berkeley ML/AI Certification Module 10 Xavier Boluna

1.2 The Stochastic Process

A sequence of random variables.
A time series is a single sample of a stochastic process.

(Yt)1:T = (Y1, Y2, . . . , YT)

for T the length of the stochastic process.

Stationary process: a process’ statistical properties remain constant over time
(mean, variance, etc.), regardless of where you put the window of time or its scale.

Independent process: when all its constituent random variables (Yt) are mu-
tually independent, i.e. p(Y1, Y2, . . . , YT) =

∏T
t=1 p(Yt) (NOTE that the values of the

past are irrelevant to the current or future values.)

IID (Independent and Identically Distributed): a process both stationary and
independent e.g. the Gaussian white noise process.

In a stationary process, the diagonals will each represent a different timestep
r1, r2, . . . → ”lags” → autocorrelation function (ACF)

2

Berkeley ML/AI Certification Module 10 Xavier Boluna

Using the ACF, one can pick out the time-dependent correlations e.g. the above
with a noticeable lag-spike at 10, corresponding to the period of the wave

1.3 Autocorrelations using statsmodel

statsmodel: Shares some functionality with sklearn, includes time-series analysis.

from statsmodel.ts.arima_process as arima_process

process = arima_process.ArmaProcess(ar = [1, -.8], ma = [1])

z = process.generate_sample(n_sample = 100)

acf = process.acf(lags = 20) # Autocorrelation Function

import statsmodel.graphics.tsaplots as tsaplots

fig, ax = plt.subplots()

tsaplots.plot_acf(z, lags = 20, ax = ax)

3

Berkeley ML/AI Certification Module 10 Xavier Boluna

There may be a general trend, a periodicity and a cyclicality. We encapsulate
this by using a model:

yt−h:t = t+ c+ s+ r

• Trend (t): long-term behavior

• Cycles (c): random low-frequency variations

• Seasonality (s): known periodicity

• Residue (r): everything else

If y characterizes the trend, cycles and seasonality well, then we would expect
the residue to behave like a stationary process. NOTE: Sometimes you may need to
multiply terms e.g. trend by seasonality, depending on if the behaviors scale this way.

Time Series decomposition

Trend

t = conv(y, f) → tt = f0yt−6 + f1yt−5 + . . .+ f12yt+6

Seasonality

Chop up the seasonality by period and overlay the data. Filter the high-frequency
noise & calculate the mean of the data.

4

Berkeley ML/AI Certification Module 10 Xavier Boluna

1.4 Programming the Time Series Decomposition

from statsmodels.tsa.seasonal import _extrapolate_trend

from statsmodels.tsa.filters.filtertools import convolutional_filter

Split up data into historical time-series and future

y_historical, y_future

We need first to extract the trend.

Smooth the historical data with a filter:

e.g. with sunspot data w/ known period 128 days

period = 128

filt = np.ones(period + 1)

filt[0] = .5

filt[1] = .5

To ensure filter does not affect mean of historical data

filt /= period

sum(filt) == 1

trend = convolution_filter(y_historical, filt)

Ensures data will reach the bounds of the historical data

trend = extrapolate_trend(trend, period + 1)

Having determined trend, now we detrend the data (remove the trend's effect)

detrended = y_historical - trend

Next, we focus on seasonality.

Identify first the indices of the minima of the detrended data

This may need to be done manually ala

lows_index = [,]

lows = y_historical.index[lows_index]

5

Berkeley ML/AI Certification Module 10 Xavier Boluna

Can plot using plt.axvline

Still need to set the period to a fixed value

period = np.round(np.mean(np.diff(low_index)))

n_seasons = len(lows)-1 # Number of seasons

Instantiate for the 2D array

seasons = np.empty((period, n_seasons))

Assemble stack of seasonal data

for p in range(num_seasons):

s = detrended[lows_index[p]:lows_index[p]*period]

s = 2*(s - np.min(s))/(np.max(s) - np.min(s))

seasons[:,p] = s

mean_seasons = seasons.mean(axis=1)

Smooth seasonal data by creating a filter \& applying

filt_size = 9

filt = np.repeat(1. / filt_size, filt_size)

for p in range(n_seasons):

s = seasons[:,p]

s = convolution_filter(s, filt)

s = extrapolate_trend(s, filt_size)

s = 2*(s - np.min(s))/(np.max(s) - np.min(s))

seasonals[:,p] = s

Make sure to remove outliers after this step.

Recalculate mean

mean_seasons = seasons.mean(axis=1)

Build the seasonality template

Instantiate frame with correct indices (set data to all zeros)

seasonality = pd.Series(index = y_historical.index, data = 0)

for low in lows_index:

if low_period<len(seasonality):

6

Berkeley ML/AI Certification Module 10 Xavier Boluna

seasonality[low:low+period] = mean_seasons

else:

seasonality[low:] = mean_seasons[:len(seasonality) - (low+period)]

Renormalize to 1

seasonality = seasonality/np.max(seasonality)

Final model

model = 2 * trend * seasonality

Compute residue to view whether remaining data is stationary

residue = y_historical - model

View the ACF

tsaplots.plot_acf(residue, lags=20, ax=ax)

Forecasting.

Create trend

yhat_trend = pd.Series(index = y_future.index, data = trend[-1])

Create seasonality

yhat_seasonality = pd.Series(index = y_future.index)

for i in range(len(yhat_seasonality)):

7

Berkeley ML/AI Certification Module 10 Xavier Boluna

yhat_seasonality[i] = seasonality[-(2*len(mean_seasonality) + 1)]

Compute forecast

yhat = 2*yhat_trend*yhat_seasonality

Compute prediction error

pred_error = y_future - yhat

Statsmodels does have a fcn. which allows you to naively do this all-in-one:

from statsmode.tsa.seasonal import seasonal_decompose

seasonal_decompose(

x = y_historical,

model = 'additive' or 'multiplicative',

period = int

).plot()

1.5 The ARMA Framework

Designed to capture the time-invariant structure of stationary time series.

• Autoregression AR(p): model based on observations that are correlated with
lagged observations

• Integrated: term indicating that raw observations have been differentiated to
make the time series stationary

• Moving Average MA(q): model based on the dependence between observation
& residual error after applying a moving average model to lagged observations

where p and q are the orders of the AR and MA processes.

For moving average, the process assumes that an output yt is fed by gaussian
white noise (at).

MA(q): yt = at +
∑q

j=1 θjat−j

8

Berkeley ML/AI Certification Module 10 Xavier Boluna

With AR, we feed the output yt and feed it back on itself.

AR(p): yt = at +
∑p

j=1 ϕjyt−j

Determining the order of MA or AR
With MA, the ACF will have as many non-zero entries (aside from the first) as

the order.

9

Berkeley ML/AI Certification Module 10 Xavier Boluna

This is not true for AR.

However, with the Partial Autocorrelation Function (PACF), the opposite will
be true. The AR order will have a corresponding number of nonzero entries.

Combine moving average and autoregression to create ARMA.

ARMA(p,q): yt −
p∑

j=1

ϕjyt−j = at +

q∑
j=1

θjat−j (1)

Using ARMA:

• Check that the signal is stationary

• Use sample autocorrelation fcn. (SAFC) and sample partial autocorrelation
fcn. (SPACF) to select p and q

• Compute θ and ϕ coefficients of MA(q) and AR(p)

10

Berkeley ML/AI Certification Module 10 Xavier Boluna

• Compute the residuals (check that is is == white noise)

• Make the forecast

11

