Berkeley ML/AI Certification Module 10 Xavier Boluna

1 Module 10: Time Series and Forecasting

Contents

1 Module 10: Time Series and Forecasting
1.1 The Forecasting Problem
1.2 The Stochastic Process
1.3 Autocorrelations using statsmodelo L
1.4 Programming the Time Series Decomposition

1.5 The ARMA Framework

O Ut W N = =

1.1 The Forecasting Problem

Given some existing time-series data, try to forecast trends which will occur in the
future. The modelling may be context-agnostic (i.e. 100 yrs of data collected yearly
== 100 seconds of data collected per-second)

Methodology:
e 1. Collect historical data

e 2. Train a model

3. Use the model to make a forecast

e 4. Evaluate the performance of the model on updated data
Notation:

e Value at time t:

e Historical data: y; p.t = [Ye—hit1, Yena2s - - Yt

o Forecast: Uniyr = [Yes1, Utt2s - - - Yo g)

e Future data: yesrr = [Yes1s Yet2, - - -, Yers)

o Forecast error: e; = Ypiirf — Yrtyf

e; is an array, so we reduce it to a minimizeable number:

o MAE: ||e;|[; = S5 Je(r)]

T=t+1

e RMSE: ||€t||2 = \/% Zf:;rl €<T)2

Berkeley ML/AI Certification Module 10 Xavier Boluna

1.2 The Stochastic Process

A sequence of random variables.
A time series is a single sample of a stochastic process.

(Yorr = (Y1, Y2, ..., Y7)
for T the length of the stochastic process.

Stationary process: a process’ statistical properties remain constant over time
(mean, variance, etc.), regardless of where you put the window of time or its scale.

Independent process: when all its constituent random variables (Y;) are mu-
tually independent, i.e. p(Y1,Ys,...,Yr) = Hthl p(Y:) (NOTE that the values of the
past are irrelevant to the current or future values.)

IID (Independent and Identically Distributed): a process both stationary and
independent e.g. the Gaussian white noise process.
AUTOCORRELATION FUNCTION P OF

AUTOCORRELATION MATRIX P OF A A STOCHASTIC PROCESS (Y1)
STOCHASTIC PROCESS (Yt) stationary => lag1: 1= p(t, %) = p(¥a, ¥a) = p(¥p.¥a) = ...
lag2: r=p(fy, 1) =py,Y) = p(¥s, ¥y) = ...
1 o, Y2) p(Y, Ya) p(¥e,Yy) - . nonon
paY) 1 p(BY) plryYy) - IERE]
P=]p(¥s Y1) p(¥s ¥s) 1 p(¥s, ¥g) .. o Irri 2_ .

p(re, Y1) p(Yy,Ys) p(¥y, Ys) 1

In a stationary process, the diagonals will each represent a different timestep
rl,r2,... — "lags” — autocorrelation function (ACF)

Berkeley ML/AI Certification Module 10 Xavier Boluna

M y Py
10w . i
e ‘ |I y
6
;ui i ||Iu| ('“f r1| |'I| r| II HII'[‘ ||I|I‘ I' “ .
B . 1z
3 i ap =
03 i = i ' \ ' <2
0s N
%0 25 S0 75 M0 15 Le 15 2 “ d “ " ' ‘: : ’ ’

Using the ACF, one can pick out the time-dependent correlations e.g. the above
with a noticeable lag-spike at 10, corresponding to the period of the wave

1.3 Autocorrelations using statsmodel
statsmodel: Shares some functionality with sklearn, includes time-series analysis.

from statsmodel.ts.arima_process as arima_process

process = arima_process.ArmaProcess(ar = [1, -.8], ma = [1])
= process.generate_sample(n_sample = 100)

acf = process.acf(lags = 20) # Autocorrelation Function

import statsmodel.graphics.tsaplots as tsaplots

fig, ax = plt.subplots()
tsaplots.plot_acf(z, lags = 20, ax = ax)

TIME SERIES EXAMPLES

MNASDAQ Composite index Number of observed sunspots
w0
2000 | wn
10,000
50
000 200
6,000 150
4000 1 |
2,000 9]
]
2002 2004 2006 3008 G ANZ T4 e 2018 2023 1350 18E0 170 100 1930 0e 20 020
U.5. unemployment rate (percent) Stationary process
.| =] h
L H ”ﬁh q h t
(Al
. | Ty /!
8 L) z i|! Ly |
. | \ r IJ ﬂ
\{U N « f
n
W
z

WI0 WED 1970 13WO 1990 2000 IO 070 ¢ 5 B ™ M 15 50 U5 X

Berkeley ML/AI Certification Module 10 Xavier Boluna

There may be a general trend, a periodicity and a cyclicality. We encapsulate
this by using a model:
Y—pt =t+c+s+r

e Trend (t): long-term behavior

e Cycles (¢): random low-frequency variations
e Seasonality (s): known periodicity

e Residue (r): everything else

If y characterizes the trend, cycles and seasonality well, then we would expect
the residue to behave like a stationary process. NOTE: Sometimes you may need to
multiply terms e.g. trend by seasonality, depending on if the behaviors scale this way.

Time Series decomposition

Trend

t =conv(y, f) = t: = foyr—e + f1ye—s + ... + f12Yi+6

“:IH‘ fHH lf;"\g t

L
g 3z
1} 06]
a 250 ™ f-fJ .-")I
- FA N/
o . N J’f \vf
E 2281 == \‘ ~
z W1/ N
7
E-:] 117 70 7B an BIE
Time
Seasonality

Chop up the seasonality by period and overlay the data. Filter the high-frequency
noise & calculate the mean of the data.

Berkeley ML/AI Certification Module 10 Xavier Boluna

—— Historical data
—— Wean seasonal

200

175

1s0

135

Number of sunspots
5
2

Month

1.4 Programming the Time Series Decomposition

from statsmodels.tsa.seasonal import _extrapolate_trend
from statsmodels.tsa.filters.filtertools import convolutional_filter

Split up data into historical time-series and future
y_historical, y_future

We need first to extract the trend.

Smooth the historical data with a filter:
e.g. with sunspot data w/ known period 128 days

period = 128
filt = np.ones(period + 1)
filt[0] = .5
filt[1] = .5

To ensure filter does not affect mean of historical data
filt /= period
sum(filt) ==

trend = convolution_filter(y_historical, filt)
Ensures data wtll reach the bounds of the historical data
trend = extrapolate_trend(trend, period + 1)

Having determined trend, now we detrend the data (remove the trend's effect)
detrended = y_historical - trend

Next, we focus on seasonality.

Identify first the indices of the minima of the detrended data
Thts may need to be done manually ala

lows_index = [,]

lows = y_historical.index[lows_index]

Berkeley ML/AI Certification Module 10 Xavier Boluna

Can plot using plt.azvline

Still need to set the period to a fized value
period = np.round(np.mean(np.diff (low_index)))
n_seasons = len(lows)-1 # Number of seasons

Instantiate for the 2D array

seasons = np.empty((period, n_seasons))

Assemble stack of seasonal data

for p in range(num_seasons):
s = detrended[lows_index[p] :lows_index [p]*period]
s = 2%(s - np.min(s))/(np.max(s) - np.min(s))
seasons[:,p] = s

mean_seasons = seasons.mean(axis=1)

05

nrs

()

Smooth seasonal data by creating a filter \& applying

filt_size = 9

filt = np.repeat(l. / filt_size, filt_size)

for p in range(n_seasons):

= seasons[:,p]

convolution_filter(s, filt)

extrapolate_trend(s, filt_size)

2x(s - np.min(s))/(np.max(s) - np.min(s))
seasonals[:,p] = s

Make sure to remove outliers after this step.

Recalculate mean

mean_seasons = seasons.mean(axis=1)

p
s
s
s
s

Butld the seasonality template
Instantiate frame with correct indices (set data to all zeros)
seasonality = pd.Series(index = y_historical.index, data = 0)
for low in lows_index:

if low_period<len(seasonality):

Berkeley ML/AI Certification Module 10 Xavier Boluna

seasonality[low:low+period] = mean_seasons

else:
seasonality[low:] = mean_seasons[:len(seasonality) - (low+period)]

Renormalize to 1
seasonality = seasonality/np.max(seasonality)

! Ih,r. l,’l..nl l.'.y,1 M M ll'.qﬁ,l i l.'hr,k
o8 |'I | III \I III| '|| |l| | |I| | ll.']l | .'I "1| |'I |
| | | I | | | | | | | \ | |
0 | |I | II || |I || | | |I | |I I | | II
| |
| L | I'| II'. | '|II | '-I. | '-II | -.II | I.II
o4 || l|| f II' I|| I| | I| || II I|| I|I | I| || II
I |I I 1 II I |I lll II 1 I II lll II
i I'| |) ILl { I'| "I i VoS l'l ,"l \ f !
. |III L‘l'l / I'l'l lI|l l". , l" |III Il" 'lll l"l f IH |I
| ILl\J‘ II'IJ ! Il' ! \ II1"—I
oo —_
180 w0 1930 1930 1640 1850 1850 1870 Han

Final model
model = 2 * trend * seasonality

-

190 192 1840 1360 1980

Compute residue to view whether remaining data s stationary
residue = y_historical - model

View the ACF
tsaplots.plot_acf(residue, lags=20, ax=ax)

Forecasting.

Create trend

yhat_trend = pd.Series(index = y_future.index, data = trend[-1])
Create seasonality

yhat_seasonality = pd.Series(index = y_future.index)

for i in range(len(yhat_seasonality)):

Berkeley ML/AI Certification Module 10 Xavier Boluna

yhat_seasonality[i] = seasonality[-(2*len(mean_seasonality) + 1)]

Compute forecast
yhat = 2*yhat_trend*yhat_seasonality

Compute prediction error
pred_error = y_future - yhat

Statsmodels does have a fen. which allows you to naively do this all-in-one:
from statsmode.tsa.seasonal import seasonal_decompose

seasonal_decompose (
x = y_historical,

model = 'additive' or 'multiplicative',
period = int
) .plot)

1.5 The ARMA Framework

Designed to capture the time-invariant structure of stationary time series.

e Autoregression AR(p): model based on observations that are correlated with
lagged observations

e Integrated: term indicating that raw observations have been differentiated to
make the time series stationary

e Moving Average MA(q): model based on the dependence between observation
& residual error after applying a moving average model to lagged observations

where p and q are the orders of the AR and MA processes.

For moving average, the process assumes that an output y; is fed by gaussian
white noise (a;).

MA(q) Y = g + Z;I':l Qjat,j

Berkeley ML/AI Certification Module 10 Xavier Boluna

MA(q)

0, 6, 6, 0,
x X

X

Gaussian
white noise

Yt

Ar_1 | Q-2

Ai_3 at_q

With AR, we feed the output y; and feed it back on itself.

AR®D): ye =i+ 30 by

AR(p)

Gaussian
white noise

Determining the order of MA or AR
With MA, the ACF will have as many non-zero entries (aside from the first) as
the order.

MA(2) | MA(5) MA(10)

Berkeley ML/AI Certification Module 10 Xavier Boluna

This is not true for AR.
AR(2) AR(5) AR(10)

e

.
te,
Ty
.
[
te
te
Te

.
[y
Ty
.......

However, with the Partial Autocorrelation Function (PACF), the opposite will
be true. The AR order will have a corresponding number of nonzero entries.

MA(2) MA(5) MA(10)

’
'''''
..................

Combine moving average and autoregression to create ARMA.

p q
ARMA(p,q): % — > &ty =+ Y _0ja,_, (1)

J=1 j=1
Using ARMA:
e Check that the signal is stationary

e Use sample autocorrelation fen. (SAFC) and sample partial autocorrelation
fen. (SPACF) to select p and ¢

e Compute ¢ and ¢ coefficients of MA(q) and AR(p)

10

Berkeley ML/AI Certification Module 10 Xavier Boluna

e Compute the residuals (check that is is == white noise)

e Make the forecast

11

