
A Comprehensive Overview of Spectrometers:
Calculating the index of refraction of air and

finding the spacing between Sodium-D emission lines

January 29, 2020
Report by Xavier Boluna

Laboratory partner: Ryota Johnson

ABSTRACT

This report covers four basic interferom-
eters and discusses their different features, 
specialized applications and helpful methods 
to build and calibrate them. These are the Mi-
chelson, Sagnac, Mach-Zederman and Fab-
ry-Perot interferometers. 

As part of an investigation into their 
unique properties, we measured the refrac-
tive index of air using different configurations 
of the Michelson and the Mach-Zederman in-
terferometers. For the Michelson Interferom-
ter, we collected two sets of data -- one with 
equal-length arms and the other without -- to 
calculate refractive indexes of air (1 + 269.09 
× 10-6) ± (1.28 × 10-6)and (1 + 267.07 × 10-6) 
± (1.11 × 10-6), respectively. The Mach-Zeder-
man’s calculated value came to (1 + 265.45 × 
10-6) ± (0.68 × 10-6). The p-values for all three 
of these calculated values were practically 
zero, indicating a significant disagreement. 
Upon closer analysis suggests systematic 
error, however, and more experimentation is 
suggested to resolve these problems. 

We used the Fabry-Perot interferometer 
to measure the spacing of emission wave-
lengths of a Sodium-D lamp. We calculated a 
value of 0.5978 ± 0.0058 nm and a p-value of 
0.4698, indicating signficant agreement. 

Without any 
changes, an 
interference 
pattern.

A lighter flame 
held in front of 
the beam.

A stream of butane 
held in front of the 
beam.

Exploration of the Mach-Zederman Interferome-
ter’s ability to show images of the change in the 
refractive index of air.

Interference patterns from the Michelson (top 
right), Fabry-Perot (bottom right)  and Sagnac 
(below) Interferometers.



Introduction

Spectroscopy owes its genesis to one of the 
most contentious questions of the 19th century: 
how did electromagnetic waves travel through 
space? Many of the most prolific physicists of the 
time dealt with this question, including Maxwell, 
who built his family of equations on the existence 
of an ‘ether’ which permuted matter and through 
which light could propagate.

Such was the state of physics when Albert 
Michelson and Edward Morley created their now 
historied experiment: an interferometer oriented 
in parallel to the Earth, to measure the planet’s 
drift through this stationary ether (see Figure 
Two, next page). As the Earth rotated on its axis, 
the fringes created by optical interference should 
shift slowly -- thereby allowing them to measure 
the Earth’s absolute velocity through this sub-
stance (Feynman, 1963).

Michelson & Morley’s experiment bore re-
sults which remained unexplained for nearly two 
decades, until Albert Einstein’s development of 
relativity proved that their measurement was 
correct. The Earth’s absolute velocity through the 
ether was zero, because the ether did not exist.

The science of spectroscopy is fundamental 
to the trajectory of modern physics. In the time 
since Michelson & Morley’s experiment in 1887, 
spectrometers have reached ubiquity in the world 
of scientific instrumentation. Various different 
types exist, including those in hospitals (see MRI 
machines), forensics laboratories (see Mass 
Spectrometers) and aboard rovers bound for 
Mars (see Opportunity’s tri-color imaging spec-
trometer). In October of 2017, the Laser-Inter-
ferometer Gravitational-Wave Observatory used 
two massive interferometers placed on the limits 
of the contiguous U.S. to measure the collision 
of two black holes more than a billion light-years 
away from Earth (LIGO, Caltech).

The interferometers that measured this 
event were, at their core, Michelson interferom-
eters. This report explores this interferometer, 
among other modifications which constitute the 
Mach-Zedner, Sagnac and Fabry-Perot interfer-
ometers. These interferometers are each func-
tionally equivalent to the specialized systems 
found in applications around the world.

We explore some of these capacities, includ-

An abstract depiction of the ‘Luminous Ether’

an electromagnetic 
wave, propagating 

through the 
‘ether’

The Luminous Ether (fictionally pictured in yellow) 
was a hypothesized medium by which electromagnet-
ic waves (including light) propagated. It was said to be 
in a stationary reference frame. 

Michelson & Morley hypothesized that, by building 
an interferometer with an arm in parallel to the Earth’s 
rotation (white arrow), they could measure the phase 
change as the Earth travelled through the ether. Their 
experiment yielded a transformative end result: the 
ether does not exist.

ing the ability to measure the refractive index of 
air and sodium-D spectral emission doublet lines, 
fundamental in the discovery of the Zeeman ef-
fect (Lab Manual, Brown).

The goal of this report is to explore these in-
terferometers and their properties, compare them 
to the scientifically accepted data and provide 
useful information to reproduce each experiment.

This report is organized in the following 
sections, including data tables and bibliographical 
information placed in the Appendix:
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Introduction ... 2

Methods & Procedures ... 3
Error Analysis ... 8

Results ... 9
Discussion ... 11

Appendix ... 12



Methods and Procedures

Perhaps the most important and tedious pro-
cess of building a spectrometer is its alignment. 
All four of our spectrometers require relatively 
precise alignment in order to create a resolved 
interference pattern.

The first step in aligning an interferometer is 
understanding the behavior of light interference. 
Any electromagnetic wave has the intrinsic prop-
erty of wavelength and phase. In our case, we 
can consider coherent light, or light of a known 
and relatively fixed wavelength and phase. Like 
overlapping waves in the ocean, light interference 
creates regular fringes of constructive and de-
structive interference. Figure One is an excellent 
example, depicting the interference pattern pro-
duced by a Michelson Interferometer.

Figure Two depicts the schematic of a Mi-
chelson Interferometer. An important factor to 
regard is the wavelength of our emitted light. Our 
helium-neon laser is single-mode, meaning that 
just one wavelength of light is emitted at 632.8 
nanometers, or 6,382 × 10-10 meters. This laser 
enters the beam expander (focal length (f) = 
4.5mm), increasing its diameter, and reaches a 
half-silvered mirror known as the beam splitter. 
Oriented 45° to the laser, an ideal splitter evenly 
splits the light in two directions of equal intensity.

The distance between the beam splitter and 
the mirror is the arm length. This is crucial as, un-
less the arms are calibrated to a equal distance 
to a resolution of roughly 10-10 meters, the reflect-
ed lasers will not meet the beam splitter in phase. 
Slight differences in the path between the splitter 
and mirror, however, shift the fringes as the light 
intersects at different phases.

The methodology for finding the refractive 
index of air is to pressurize a tube of a certain 
length (ours is 20 cm), thereby increasing the 
refractive index, and counting the number of 
fringes that pass as the tube depressurizes. 
Theorem One (next page) derives the mathemat-
ical formula to describe the relationship between 
the number of fringes, the starting and ending air 
pressures and the refractive index of the gas.

We are able to perform this analysis of the 
refractive index with both the Michelson and 
Mach-Zedner interferometers, using the same 
equation for each.

Figure One: An interference pattern produced by 
our Michelson interferometer

these dark 
fringes are 
produced 
when the light 
waves expe-
rience total 
destructive 
interference

This is a picture of the interference pattern produced 
by the Michelson Interferometer. Notice the dark fringes, 
telltale of destructive interference. The fringes shift as the 
path length, and therefore the phase at the point of contact, 
change.
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Figure Two: A simple schematic of the Michelson 
Interferometer

Light is emitted from 
the Helium-Neon laser 
at a wavelength of 632.8 
nm, travelling first through 
the beam expander (f = 
4.5mm). The central part of 
the interferometer splits two 
beams of light at 90 and 180 
degrees. This light travels 
through each arm of the 
interferometer and returns to 
coincide on the beam split-
ter, which reflects the light 
towards a screen.



Consider γ to be the change in path length.
γ is equivalent to the number of fringes that pass 

multiplied by the wavelength (distance between 
phases) of the laser. 

γ = Nλ
This is equal to the product of the tube length L 

(multiplied by two because the light passes through 
the tube twice) and the change in refractive index, Δn.

γ = Nλ = 2L(Δn)
We can thereby solve:
Δn = (Nλ)/(2L)
We know that the ratio between the starting and 

ending density define the starting and ending index of 
refraction. From the ideal gas law, we know density is 
proportional to pressure over temperature.

Δρ/ρ0 = (Δn-1)/(n0 -1) = (ΔPT0)/(P0ΔT)
Therefore, if we ensure T=T0, we can solve:
Δn = (n0 -1)(ΔP/P0)
Combining these equations, we can solve for n0 our 

starting refractive index.
Δn = (n0 -1)(ΔP/P0) = (Nλ)/(2L)
n0 = 1 + [(Nλ)/(2L)] [P0/ΔP]

Theorem One: Derivation of the relationship be-
tween Refractive Index, Pressure and the Num-
ber of Fringes

Each of the interferometers will now be 
discussed in turn, including the process of cali-
brating the interferometer and practical advice for 
accurately doing so.

The Michelson Interferometer

The crucial elements of the Michelson Inter-
ferometer have already been discussed above. 
Light emitted by the laser is expanded such that, 
incident on the beam splitter, a reflection and a 
transmission are directed upon each arm. That 
arm reflects the light which, incident again upon 
the beam splitter, interfere to create the pattern 
shown in Figure One. 

Our particular experiment measures the re-
fractive index of air and includes an air pressure 
tube on one of the arms, used to vary the light’s 
path length and thereby that arm’s phase upon 
reaching the beam splitter.

Pertinent to the experiment, both the factory 
rating and our own independent measurements 
evaluated the tube length at exactly 20 centime-
ters.

Figure Three shows our interferometer over-
laid with its schematic. There are a few consider-
ations when calibrating this interferometer.

First, ensure that all the elements are aligned 
such that the beam is parallel to the table at all 
times. This can be checked by measuring the la-
ser height at every point along the interferometer. 

Starting with a level laser beam makes 
all the difference when one begins to reflect 
the beams. With each mirror, attempt to place 
the mirror’s reflection directly upon the original 
beam’s origin on the beam splitter. If both dots 
overlap, the intensity should increase slightly. 
Doing so with both mirrors should readily produce 
an interference pattern on the screen.

From here, we can pressurize the tube and 
count the number of fringes that pass and utilize 
the equations from Theorem One to determine 
the refractive index of air.

beam 
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mirror 2

air 
pressure 

tube
(L = 20cm)

beam expander
f = 4.5 mm

helium-neon 
laser 
λ = 632.8 nm

mirror 1

Figure Three: An image of our Michelson 
Interferometer, overlaid with its schematic

This Michelson Inter-
ferometer makes use of a 
laser, a beam expander, a 
beam splitter (half-silvered 
mirror) and two mirrors. 
The light incident on the 
beam splitter is returned 
by the mirrors, creating an 
interference pattern on the 
screen to the right.



The Sagnac Interferometer

The Sagnac Interferometer has one major 
difference compared to the Michelson Interferom-
eter, in that the light travels in a loop, rather than 
out and back.

In a stationary reference frame, the light from 
the beam splitter makes a simple lap around all 
the mirrors, arriving incident upon the beam split-
ter at its origin. If both arms are measured exact-
ly, they meet each other in phase.

A factor of interest is that, if rotated, the path 
length of an individual light path will lengthen; the 
other will shorten (Sagnac, Georges). Take, for 
example, a clockwise spin. The light travelling 
clockwise (blue) will take less time to make the 
lap, due to the higher angular velocity. The light 
travelling counter-clockwise will experience the 
opposite.

Like the Michelson Interferometer, this inter-
ferometer was developed for the purpose of mea-
suring Earth’s movement relative to the Luminous 
Ether. 

The Sagnac Interferometer is much more 
sensitive to the angles of the beam splitter and in-
dividual mirrors. It is imperative that each element 
be exactly 45 degrees to the beam, and that each 
‘side’ of the loop be exactly the same length. Take 
care also to keep the beams parallel throughout 
their respective paths. 

Since both beams of light travel through 
each segment, placing an air pressure tube 
anywhere does not vary the phase of each beam. 
Our table unfortunately does not rotate either, so 
we are unable to record any data for this inter-
ferometer. It is, however, schematically similar to 
the Mach-Zedner Interferometer and so, keeping 
all the elements on the table, we can make some 
easy modifications.

Figure Three: The Sagnac Interferometer, 
overlaid with its design schematic
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This Sagnac Interferometer makes use of a laser, a 
beam expander, a beam splitters (half-silvered mirror) and 
three mirrors. The light incident on the beam splitter is 
reflected across all three mirrors, returning to the original 
beam splitter to create an interference pattern.

This interferometer is designed to be rotated about the 
center to create an interference pattern, shortening and 
elongating the two light paths.

Figure Four: An interference pattern created by 
the Sagnac Interferometer

This beam, com-
pared to the Michel-
son Interferometer 
pattern of Figure 
One, is much larger.

The light from the 
Sagnac Interferom-
eter’s beam splitter 
must travel rough-
ly twice as long 
compared to the 
Michselson Inter-
ferometer before it 
returns to create an 
interference pattern.
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Figure Five: The Mach-Zederman Interferometer, 
overlaid with its design schematicThe Mach-Zederman Interferometer

From a logistical perspective, the only differ-
ence between the Sagnac and Mach-Zedermen 
is a beam splitter and an extra screen. In fact, 
this is the easiest way to build this interferometer: 
starting first with the Sagnac to ensure that the 
beams are level and aligned, then substituting the 
second beam splitter for the last mirror. Figure 
Five shows this slightly different schematic.

Light that passes through the beam splitter 
reflects off a mirror on each arm and is coinci-
dent on a second beam splitter. This splitter then 
reflects and transmits two interference patterns. 
Each pattern is the inverse of the other -- fringes 
corresponding to troughs in the other, and vice 
versa.

A pressure tube can be placed in any seg-
ment between a mirror and beam splitter in 
order to collect data on the refractive index. The 
formula must be modified slightly, however, to 
account for the light travelling just once through 
the tube, we modify our Theorem One to be: n0 
= 1 + [Nλ/L] [P0/ΔP], removing a 1/2 factor on the 
second term.

The Mach-Zederman interferometer holds 
a couple benefits over the other interferometers 
on this list. For starters, its interference pattern 
is flat, as shown in Figure Six (a), compared to 
the circular patterns of the rest. This interferom-
eter’s wider and more stable beams also lend 
to the ability to visually demonstrate phase dif-
ference caused by items which are transparent 
but change the refractive index. When a flame is 
held up in front of a beam between either mirror 
and the last beam splitter, a pattern 
like Figure Six (b) appears. The 
clarity and clearly resolvable shape 
of these objects is unique to the 
Mach-Zederman interferometer.

This Mach-Zederman Interferometer makes use of a 
laser, a beam expander, two beam splitters (half-silvered 
mirrors) and two mirrors.

Light from the first beam splitter is mirrored on both 
arms to the second beam splitter, creating an interference 
pattern.

Figure Six: Interference patterns created by the 
Mach-Zederman Interferometer

(a) (b) (c)

Three interference patterns created by 
the Mach-Zederman Interferometer. The 
Mach-Zederman is unique in that it can 
show clearly changes in refractive index of 
objects held before the beam.

Without any changes, 
an interference pattern.

A lighter flame held in 
front of the beam.

A stream of butane held 
in front of the beam.



Figure Seven: 
The Fabry-Perot  
Interferometer

A sodium lamp emits inco-
herent light at two wave-
lengths: 589.0 and 589.5 nm.

Two half-mirrors in parallel 
allow light to be trapped in 
a ‘Fabry-Perot cavity.’

Light that escapes 
creates an interference 
pattern. 

The multimodal light of the 
Sodium lamp interferes with 
itself, creating a pattern. 
Varying the mirror separa-
tion tq changes the relative 
phase difference Δλ such 
that tq α 1/Δλ.

Sodium 
LampDoublet interference 

pattern

The Fabry-Perot Interferometer

Our fourth interferometer differs greatly in 
form and function than the first three. We will use 
the Fabry-Perot Interferometer to measure the 
difference in wavelength of Sodium-D doublet 
interference lines. 

Unlike the others, the Fabry-Perot interfer-
ometer uses incoherent light from a multimodal 
Sodium lamp. This light enters two half-silvered 
mirrors in parallel, allowing light to be ‘trapped’ in 
this cavity and reflects repeatedly until it escapes. 
This repeated reflection causes the light to inter-
act and create an interference pattern.

Though, ideally, the lamp’s rays are perpen-
dicular to the first mirror, the incoherent nature of 
the light emitted by the lamp renders this relative-
ly unnecessary. When calibrating the interferom-
eter, it is actually more useful to set the mirrors 
parallel ‘by eye.’ Once they appear parallel, you 
can filter the lamp through a pinhole and attempt 
to line its tracers onto the same point. If this last 
step is done correctly, there should already be a 
shadow of interference over the pinhole. Remov-
ing the pinhole filter by this point will reveal the 
interference pattern, as shown in Figure Seven. 

As the lamp is multimodal, we can some-
times observe a ‘doublet’ in the interference pat-
tern, wherein there is a noticeable separation be-
tween the two wavelengths emitted by the lamp. 
This distance can be evaluated by changing the 
separation of the mirrors. As the mirror separation 
increases, the doublet will split, becoming blurry 
and converging until the lines begin to diverge 
and resolve clearly from one another again. This 
total mirror separation from divergence to conver-
gence to divergence again is our recorded value 
for mirror separation Δd = d2 - d1.

To resolve the doublet, vary the mirror sep-
aration until the interference patterns begins to 
shift slightly. At this point, some tweaking of the 
mirrors may be required as the doublet begins to 
split and converge again. The image may be-
come blurry throughout this process, especially if 
you are using a focusing lens. This is normal, as 
long as the image becomes clear as the doublet 
converges once again.

With this principle in mind, we can develop 
a relationship to describe the difference between 
the doublet wavelengths (Δλ) by varying the mir-
ror separation (Δd). Theorem Two does this, by 
involving the average of the doublet wavelengths 
(λk) to determine a theoretical value for the differ-
ence between the doublet wavelengths.



Error Analysis

Some discussion must specifically be had 
over the choice of error, its propagation, and our 
standards for determining whether our measure-
ment is in good agreement with theory.

Firstly, with data we record ourselves, we 
determine its variance σ2. With this, we are able 
to apply some error to the value. Say value x has 
a variance σx

2 -- its error will be σx = δx. We can 
represent this data set then as xi ± δxi. 

In all cases except one, this is how we will 
determine our error for collected data. This ex-
ception is the upper limit for our pressure value 
(ΔP). It was very difficult to accurately determine 
our starting pressure as the pressure tube we 
used had a leak. As such, high pressures were 
more difficult to accurately measure and time. 
For that reason, we assign our value ΔP = 300 
mmGHg ± 10 mmHg.

Many of our formulas are dependent on val-
ues assumed about the equipment we are using 
(e.g. the sodium lamp) and the environment (e.g. 
ambient air pressure). This includes the values 
we compare our When possible, we source these 
values from reputable or peer-reviewed sources. 
These sources are included in the bibliography. 

Some information we collect does not in-
clude uncertainty due to the high precision of 
these experiments. In these, we include an un-
certainty of ±10-n where n is the number of places 
the value includes. The refractive index of air, for 
example, we allow n = 1.00027717 ± 10-8.

When propagating error, we will use the rule 
of quadrature. For some function q(x1,x2,...,xi) with 
associated errors δxi, the error for that function is 
δ(xi) = √( ∑(d/dxi × δxi) ).

We will then want to determine a weighted 
average to represent our data. First, the weight wi 
= 1/σi

2. This is then used to compute the weight-
ed average xwAv ± δwAv = (∑wixi)/(∑wi) ± (∑wi)-1/2.

This value is important because we use its 
uncertainty to define our Gaussian Distribution. 
Composing this function is rather simple, requir-
ing our computed and reference values and their 
included uncertainties.

Looking at Figure Eight, we see the equation 
for the Gaussian distribution, which defines its 
own error parameter σ and a center for the func-
tion, μ. We want to center our distribution at x = 0 
so we choose μ = 0.

Figure Eight: 
The Gaussian 
Distribution

The Gaussian Distribution takes in our combined uncertain-
ty to produce a distribution which evaluates the probabilistical-
ly ‘best’ value. With this, we can calculate the area under the 
curve from our data point (which will be the deviation from the 
accepted value) and find a p-value. This value helps us evalu-
ate the accuracy of our experimental results.

(Stanford, 2016)

Diffuse light of wavelength λ that travels through 
the Fabry-Perot Interferometer with mirror separation 
Δd will leave at an angle θm such that:

cos(θm) = [λ × (m - φ/π)]/(2Δd)
where φ is the phase of the light and m its order.

Light that has two wavelengths λ1 and λ2 produce 
between one and two rings per fringe, depending on 
the mirror separation.

At values of Δd where the rings coalesce into a sin-
gle fringe, the innermost ring of λ1 of order m overlaps 
the ring (m-1) of λ2. 

We equivalate these two states such that:
[λ1 × (m - φ/π)]/(2Δd) = [λ2 × (m - 1 - φ/π)]/(2Δd)

which solves to be:
(λ2 - λ1)(m - φ/π) = λ2 = Δ λ(m - φ/π)
Two assumptions are now made to simplify the 

equation further. First, because the Sodium-D lines 
are very closely spaced, we can say  that the mean 
wavelength ƛ ≈ λ1 ≈ λ2. Looking at the equation we 
have, the term (m - φ/π) is dominated by m when it 
becomes large. Its largest value, achieved when the 
rings are closest to the axis of rotation -- essentially 
the center -- is 2Δd/λ.

Replacing all the necessary components now, we 
get the following equation:

Δλ(2Δd/ƛ) = ƛ
which, solving for Δd:

Δd = ƛ2/(2Δλ)

Theorem Two: Derivation of the relationship 
between Mirror and Doublet Separation 



Results

Calculating the Refractive Index of Air

We will be using three data sets to calculate 
the refractive index of air. From the Michelson In-
terferometer, we have two sets: one in which the 
arms are of equal length in Table One (a), and 
another with differing lengths in Table One (b). 
Our third set is from the Mach-Zederman Interfer-
ometer in Table One (c). All data tables are collat-
ed in the Appendix.

There are a few known values we need to 
consider before using Theorem One. First, the 
pressure. We started from an initial pressure 
P0 =101.3 kPa and raised our tube pressure to 
about dP = 300 mmHg. As discussed in our error 
analysis section, our tube was leaking and so the 
exact pressure from which we started counting 
was difficult to ascertain. For this reason, we can 
consider our change in pressure dP = 300 ± 10 
mmHg. This, of course, is converted to Pascals in 
our calculations.

Two slightly smaller considerations are the 
ratings provided to us for the tube length and the 
wavelength of the Helium-Neon laser. These we 
assign nominal uncertainties L = 20 ± 0.1 cm and 
λ = 632.8 ± 0.01 nm.

With these constants in mind, we run the 
data and recieve the sets shown in Figure Nine.

Taking this data, we can easily find the 
weighted averages of each of the sets:

Michelson Interferometer with equal-length 
arms: (1 + 269.09 × 10-6) ± (1.28 × 10-6)

Michelson Interferometer with differing-length 
arms: (1 + 267.07 × 10-6) ± (1.11 × 10-6)

Mach-Zederman Interferometer:
(1 + 265.45 × 10-6) ± (0.68 × 10-6)
Reference Value: 
(1 + 277.17 × 10-6) ± (0.01 × 10-6)

The parameter σ is simply defined as the 
propagation of the error in our weighted average 
and the reference value such that σ = √( δxwAv

2 +  
δxref

2 ).
The coefficient of the Gaussian Distribution 

normalizes the distribution, such that the integral 
over its full bounds (-∞,∞) is just one. For this 
reason, the p-value suggests a percent likelihood 
that a given value is correctly obtained.

Figure Nine: Comparing all calculated indexes 
against one another

After applying our equation from Theorem One to all three 
data sets, we get this group of evaluations for the index of 
refraction. The blue and green dashed lines correspond to the 
equal- and differing-length Michelson Interferometer readings, 
respectively. The red corresponds to the Mach-Zederman 
Interferometer.

Placing our values side-by-side, there is a 
problem that is immediately evident. Our readings 
are shifted down, relative to the reference value 
we have for the index of refraction, as shown in 
Figure Ten. The error we have for each of these 
is very small, such that they do that include the 
reference value, though they do overlap slightly 
with each other.

The consistent shift downwards is indicative 
of a systemic issue, and with errors as small as 
those we have calculated, there isn’t much wiggle 
room for the data. 

Figure Ten: The weighted averages of our data 
vs. our accepted value

Our weighted values appear 
to be shifted consistently away 
rom the reference value (red). 
The error in our weighted 
values do not encapsulate the 
shift, either. This suggests a 
systemic error.



The Spacing of Sodium-D Emission Lines

Unlike our single-mode laser from past 
interferometers, our light source is a multimodal 
Sodium lamp. The two wavelengths the lamp 
emits are 588.9950 and 589.5924 nanometers 
(Metrologia, Juncar). Given the already very high 
resolution of this measurement, we can consider 
the uncertainty for these values to be roughly the 
last digit: δλ = 0.0001 = 10-5. 

For our purposes, we need their average 
as a ‘known’ wavelength λk = 589.2937 nm. We 
use this, and the equation from Theorem Two to 
evaluate the difference between the wavelengths 
in our analysis.  

Computing all our data from Table Two, we 
get the following data shown in Figure Eleven. 
The data is largely consistent with only one outli-
er which does not skew the spread in a significant 
manner.

We can determine our theoretical value 
with which to compare using our known data: 
(589.5924 - 588.9950) ± (δλ√2) nm = 0.5974 ± 
(10-5√2) nm.

From here, we calculate a weighted average 
to represent our dataset. This weighted average 
turns out to be 0.5978 ± 0.0058 nm.

Taking these values -- the known and de-
rived values and their respective uncertainties -- 
we can build our Gaussian Distribution. As shown 
in Figure Twelve, the weighted average value is 
in extremely good agreement with our expected 
measurements. 

With our distribution, we can determine a 
p-value of 0.4698, meaning that we are very 
close to the probabilistically best measurement.

Keeping in mind the considerable devia-
tion from our expected value, the correspondent 
p-values for each of the values are practically 
zero. The orders for each of the p-values are 
10-10, 10-14 and 10-16 for the Michaelson interfer-
ometer with equal and differing arms and the 
Mach-Zederman interferometer, respectively.

Figure Eleven: Calculated wavelength separation

We run the data though Formula Two to find a calculat-
ed set for the wavelength separation (blue). Though there 
appears to be an outlier, the data we calculated tends to be 
rather close to the reference value (red) we have for the data.

Figure Twelve: Gaussian Distribution created 
around our weighted average value

This Gaussian Distribution constructed around our weight-
ed average value. The blue lines represent the first standard 
deviation from the mean whereas the red lines represent our 
value with respect to the mean.

σ
λwAv - λknown



Discussion

The goals of this report were to explore dif-
ferent variations of the interferometer, and to in-
vestigate the capabilities that each offered. From 
the Michelson to the Sagnac to the Mach-Zeder-
man and, lastly, the Fabry-Perot interferometer, 
we were able to construct each with great preci-
sion and determine three independent values for 
the index of refraction and a remarkably accurate 
value for the separation of wavelengths of a Sodi-
um-D light source.

Each of the interferometers’ unique proper-
ties were researched and dicussed, and tech-
niques specific to the construction of each were 
outlined -- hopefully to the benefit of future re-
searchers.

Perhaps the most noticeable issue with the 
results of this report is the vast disagreement 
from the reference value for the index of refrac-
tion. The systemic shift suggests that there was a 
consistent error that affected this data. My hy-
pothesis is the following:

When counting the fringes that passed for 
the interferometer, my lap partner pressurize the 
tube while I counted the fringes that passed. As 
it was difficult to exactly time when to start count-
ing, I often chose to start counting as soon as 
the first interference pattern emerged and finish 
doing so with the last to emerge. The problem 
here is that, if I missed the end of one interfer-
ence pattern and the beginning of another, that 
would constitute a full fringe. The systemic error 
could be the result of this small but albeit impact-
ful method of recording data.

Regardless, more direct experimentation or 
a more rigorous analysis of our constants (e.g. 
recording air pressure) could yield more accu-
rate results. The computed values were, after all, 
remarkably precise.

The weighted average for the spacing of 
sodium-D emission lines was shown to extremely 
accurate and precise. A p-value of 0.4698 consti-
tutes a roughly 94% ‘agreement.’ For this rea-
son, I would consider this part of the experiment 
successful. 

Altogether, though the goals of the experi-
ment were met. We were able to construct and 
calibrate a myriad of interferometers and de-
scribe their unique properties and specialized             

applications.
In the grander scheme of interferometry as a 

whole, it inspects a small portion of a field whose 
impact has been transformative on the whole of 
physics. Still yet, some appreciation and a deep 
understanding of the basics sheds light on the 
more complex versions of the same device. The 
same principles and features which govern these 
interfometers are what compose interferome-
ters which have measured gravitational waves, 
scanned the galaxy and even surveyed the sur-
face of another planet. 
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Tables:

Table One
Trials Number of Fringes Counted

Michelson, 
equal 
arms (a)

Michelson, 
different 
arms (b)

Mach-
Zederman 
(c)

1 68 66 32
2 65 66 33
3 66 68 33
4 67 66 33
5 67 66 33
6 67 66 32
7 65 67 33
8 68 65 33
9 67 65 33
10 67 67 34

Table Two
Trials d1 d2

1 12.850 18.540
2 12.650 18.400
3 12.835 18.760
4 12.625 18.530
5 12.870 18.720
6 13.100 18.485
7 12.640 18.550
8 12.945 18.810
9 12.720 18.590
10 12.670 18.490


