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ABSTRACT:
	 Three ‘mystery’ boxes contain differing combinations of inductors, capacitors and/
or resistors with an unknown possibility of producing resonance. We varied AC frequency 
input (~) and resistance (R) and measured via an oscilloscope the voltage across the box 
(ΔVZ), across the variable resistor (ΔVR) and the phase between these two signals.
	 Using known mathematical relationships between electrical impedance (Z) and an-
gular frequency (ω), we matched telltale characteris-
tics and patterns to that of our boxes. Other insights 
included the relationship between phase and angular 
frequency, and the effect of changing resistance on 
electrical impedance.
	 We have thusly identified that Box B is a 
resistor and capacitor in parallel and fit it its relation-
ship Z2 vs. ω2 with a Χ2 goodness-of-fit test value 
of 0.231 < 17, which is considered reasonable. Our 
tan(phase) vs. ω has a Χ2 of 11,600 >> 19 which 
indicates its fit disagrees significantly.
	 Box D appears to be a resistor and capacitor in series, which a Z-2 vs. ω-2 relation-
ship obtains a fit of Χ2 = 49.6 ≈> 20, indicating a somewhat reasonable fit. Again, the Χ2 of 
tan(phase) vs. ω-1 gives 5,270 >> 22, indicating that it disagrees significantly.
	 Lastly, Box E appears to be a resonant capacitor and inductor in series. The plot of 
Z-1 against ω requires two regressions on either side of the resonant peak, which left-to-
right have Χ2 values of 5.63 and 6.86×10-2 ≈ 18 respectively, which indicates a very rea-
sonable fit. Its Χ2 for tan(phase) vs. ω-ω-1 results 1,000 >> 20, which again indicates that it 
disagrees significantly.



INTRODUCTION:

	 The first instinct of any scientist should be 
to test hypotheses and theories when possible 
-- either to provide a baseline for further exper-
imentation or challenge the different conditions 
and permutations in which these patterns present 
themselves. As such, our experimentation be-
gan first with an understanding of the underlying 
mathematics which govern complex circuits.
	 Our goal for this laboratory experiment 
was to examine circuitry which behaves nonlin-
early when comparing impedance with frequency. 
Impedance is the relationship between oscillating 
current and voltage; keeping note that these two 
need not be in phase.
	 The purpose of our experiment is primar-
ily to identify the ‘effective’ contents of each of 
the boxes. This means matching our observed 
data with a correspondent behavior represented 
by one of the above equations. This approach is 
multifaceted: first by comparing both the imped-
ance and the tangent of phase against angular 
frequency. Second, we examine behaviors at 
boundaries -- say, a change in resistance -- and 
watch how correspondent effects in different pa-
rameters indicate one circuit type or another.
	 Our secondary goal is to attempt to calcu-
late the exact values of these constituent compo-
nents -- the capacitance of one or the inductance 
of another. It may be inherently difficult to calcu-
late these apart from another, in which cases we 
will represent these values as a grouped term 
e.g. “ωC - 1/(ωL)”.
	 The first section, APPARATUS AND PRO-
CEDURE, describes in detail our setup and meth-
ods of experimentation. RESULTS comments 
on and analyzes our raw data, including error 
analysis, and draws conclusions as to the con-
tents of each boxe and their properties. Lastly, 
DISCUSSIONS AND CONCLUSIONS reviews 
the uncertainties and errors made throughout the 
experiment, offers explanations and justifications 
for those errors and suggests improvements for 
subsequent iterations of this experiment. The 
report is appended by ACKNOWLEDGEMENTS 
AND SOURCES and the TABLES section, which 
provides the raw data we used in our experiment.
	

APPARATUS AND PROCEDURE:

	 As specified in the introduction, we are 
hoping to observe specifically three values: 
voltage across the box (M), voltage across the 
resistance box and the difference in phase be-
tween these two AC signals. In our data tables, 
five parameters are recorded -- the additional two 
being frequency and set resistance. 
We used the oscilloscope’s frequency listing 
instead of the signal generator’s label; though we 
found little discrepancy. We verified the working 
order of the resistance box using an ohmmeter.
	 Our process begins with an AC waveform 
from the signal generator (~). We varied its fre-
quency into the system from about 50Hz to 100 
kHz. The signal travels clockwise in reference to 
Figure One to the mystery box (M), and then on 
to the resistance box (R). On either side of the 
boxes, terminals lead to an oscilloscope. Both 
channels share the same ground, so we inverted 
the voltage waveform across the resistance box 
(ΔVR) to match the current’s clockwise direction.
	 Before experimenting on each mystery 
box, we tested its resistance with an ohmmeter. 
We made sure to record the resistance readings 
of each of the mystery boxes.
	 When dialling in the signal generator’s 
frequency, we calibrated the frequency using the 
oscilloscope rather than the generator’s label-
ling. The oscilloscope also provided the voltag-
es across both boxes and the phase difference 
between the two waveforms. All of these we 
recorded in their respective units and order to be 
viewed in the TABLES section.

Figure 1



RESULTS:

	 Data is presented in the TABLES section 
(at the end of this report) in alphabetical order, 
however it may be informative to know that data 
was collected chronologically in the order Box E, 
Box D and Box B.
	 As discussed in section one, our indepen-
dent variables are frequency (f) and resistance 
(R). The correspondent dependent variables are 
the voltage across the mystery box (ΔVM), across 
the resistor (ΔVR) and the phase (φ) between 
each signal.
	 Box B is presented in two sets which are 
given distinction from each other because they 
highlight different characteristics of the same box. 
The first set varies resistance while the second 
does not. Their implications are further elabo-
rated upon in the analysis of Box B later in this 
section.
	 It’s informative to first begin with an equa-
tion most everyone is familiar with: 

(voltage = current × resistance)
	 Though most of the mathematics we use 
will resemble this equation, their relationships 
with frequency are quite different.
	 One of the more comfortable examples is 
that of a resistor and capacitor in parallel. 
	 Impedance, which we can describe as the 
letter Z, is obtained by the equation Z = R + jωl = 
|Z|e(jθ) where ω represents angular frequency:

	 As Z has a complex element, j = √(-1), we 
evaluate |Z| = √(Z×Z) for our amplitude.
	 Oftentimes, it is more useful to represent Z 
as its inverse, Y, which stands for complex admit-
tance:

 In our case1:

where C is the capacitance. Additionally,1 

where φ represents phase.
	 Other relevant relationships which will be 
examined in this report include that of the resistor 
and capacitor in series and the series resonant 
circuit.
	 The first is given by the equations1:

	 Whereas the second, a series resonant 
circuit, is given by the equations1:

where L represents inductance.
	 One of our primary goals is to match these 
equations to each of our boxes. Each parameter 
we collect has an inherent uncertainty which must 
be factored in to view the data as realistically as 
possible.
	 Frequency, which is controlled inde-
pendently and verified using our oscilloscope to 
an order of 10-3 we consider to have negligible 
uncertainty. Otherwise, the remaining variable are 
considered to have inherent uncertainties of:

	 I discuss our decision-making process for 
these values in DISCUSSION AND CONCLU-
SIONS.
	 It becomes necessary when performing 
operations on the data to propagate error:

	 We perform a weighted least squares 
linear regression fit using the weight parameter 
computed from the dependent variable (y-axis):

	 Such that slope coefficient A, is2:

	 And intercept coefficient b is:

where:

to form some linear equation y = ax + b. This 
method is known as Least Squares Fitting.
	 With each set of data, we can evaluate its 
error by obtaining the expected theoretical value 
of a value (usually Z) and comparing it against 
the observed value through the Chi-Square (Χ2) 
method2:

where n is the degrees of freedom:
 

		
where the expected value Ek is derived from our 
linear regression.

R: ±5Ω		  ΔVm: ±0.5V
ΔVR: ±0.5V		  Δphase: ±10

 V = I × R	 eq. 1

|Z|-2 = 1/R2 + (ω2)(C2)     eq. 4a

tan(φ) = ωCR	 eq. 4b Χ2 = Σk=0ωk(Ok - Ek)2	eq. 8

Χ2 = 0 :: perfect match
Χ2 ≈ n :: reasonable
Χ2 >> n :: significant disagreement

Y = 1/Z      eq. 3

ω = 2π×f	 eq. 2

|Z|2 = R2 + 1/(ωC)2	        eq. 5a
tan(φ) = -1/RωC	 eq. 5b

B = (ΣωΣωxy - ΣωxΣωy)/Δ	 eq. 7b

A = (Σωx2Σωy) - ΣωxΣωxy)/Δ	 eq. 7a

Δ = ΣωΣωx2 - (Σωx)2	 eq. 7c

1 Brown, Lab Manual; 2Yan, Statistics Lecture 3

ωi = 1/σyi
2

|Z|2 = R2 + (ωL - 1/ωC)2	 eq. 6a
tan(φ) = (1/R)(ωL - 1/ωC)	eq. 6b

for some function q = q(x,y)
σq = δq = √[ (∂q/∂x × σx)2 + (∂q/∂y × σy)2 ]



BOX B:

	 For our first figure, we plot impedance Z 
= ΔVm/I = ΔVm × ΔVR/R. Computing and plotting 
Table 1b yields Figure 2.
	 One important note is that our data-collec-
tion methods in higher frequencies resulted larger 
intervals between them. As a result, many points 
are clustered in the lower frequencies. 
	 For our purposes in Box B, this did not 
affect the resolution of the analysis. However, in 
order to space out these early points and better 
visually demonstrate the data, we occasionally 
use logarithmic axes. 
	 In order to create a straight line with these 
points, we take the inverse square of the vertical 
axis (|Y|2 = 1/Z2) and the square of the horizontal 
(ω2). We must also propagate error from our ini-
tial uncertainties. Figure 3 demonstrates this and 
includes the correspondent line of best fit using 
equations 7a,b,c.
	 Of additional benefit is the plot of tan(φ) (in 
radians) versus angular frequency. Figure Four 
shows this relationship with error and a line of 
best fit included. In the case of this plot, the error 
is a negligible value and thus does not appear.
	 Having calculated our weight ωi, we can 
calculate our Chi-Square goodness-of-fit test 
using:

	 The result is a Chi-Square value of 0.231 
which falls within [0,n] where n is our degrees of 
freedom (sample size - constraints = 20 - 3), 17. 
This value indicates a reasonable fit.
	 Box B has an interesting history, as men-
tioned earlier, in that the data was collected in 
‘two’ sets. The first, in which we varied the re-
sistance, and the second, in which we fixed it at 
50Ω. Surprisingly, the discrepancies between 
these two sets allow us our first clue as to the 
contents of the box. These sets were taken in 
a continuous two-hour period; essentially two 
concentrations of the same data set. As such, it 
does not constitute the deletion of data nor any 
modification to it. This is touched on more DIS-
CUSSIONS AND CONCLUSIONS. Figure Five 
depicts this ‘initial‘ set of data, which shares the 
first nine data points with that of Figure Four (see 
italicized data in Tables 1a,b).

higher density of points among 
lower frequencies

Figure 2

Figure 3
(Logarithmic Axes)

Ek = regression line = A + (B × x)

On two axes scaled logarithmically, this plot demon-
strates the accuracy of this fit within our error. 
Χ2 = 0.231 ≈ 17



Figure 4

	 As highlighted by the vertical colored lines, 
there are apparent discontinuities -- jumps in 
electrical impedance -- which coincide with posi-
tive changes in resistance.
	 Taking a look at the nature of an capacitor, 
we note that3 VC = V0e

-t/RC. Disregarding its de-
pendence on time, we notice that VC α e1/R. That 
is, increasing R will decrease voltage increasingly 
quickly. This is our first clue that the mystery box 
contains a capacitor.
	 Turning back towards the data in Figure 
Three, we can then begin to match our data to 
our theoretical mathematical patterns. Having 
inverted Z2 as Y2, we can rephrase equation 4a 
as:

	 Comparing this to Figure Three, we can 
see that at small values of ω, Y2 is small and 
largely proportional to the constant 1/R2. As angu-
lar frequency increases, the ω2 term begins to 
dominate, shooting Y2 higher towards the right.
	 Likewise for equation 4b:

	 We should expect a generally linear re-
lationship between tan(φ) and ω. Figure Four 
portrays this almost exactly; most notably with a 
slope on the order of 1/10,000. Our Chi-Square 
test unfortunately results a 1.16×104 >> 19, indi-
cating that we have a significant disagreement 
with our theoretical model. This is because of the 
outliers that are apparent in Figure Four. I dis-
cuss this later in DISCUSSIONS AND CONCLU-
SIONS.
	 Still, we have convincing evidence, to be-
lieve that Box B is a capacitor in parallel with our 
resistor box.
	 Armed with this information, we can begin 
to extract data about this capacitor.
	 Solving for C in equation 4a, we get:

	 Using this method on our data, we recieve 
a mean C value 4.90×10-6 with a standard devia-
tion 4.49×10-6. A capacitance on the order of 10-6 
is not uncommon and its standard deviation is 
likewise negligible.

Figure 5

|Y|2 = 1/R2 + ω2C2

tan(φ) = ωCR

C2 = (|Y|2 - 1/R2)/ω2

3Wikipedia, RC Circuit

Notice the outliers which deviate significantly from the 
best fit line. Error mathematically results to be negligi-
ble.
Χ2 = 11,600 >> 19

These vertical lines denote a unique event: a change 
in set resistance. We know that capacitors in parallel 
produce this behavior.



BOX D:

	 Figure Six plots the data from Table 2 into 
logarithmic axes Z and ω.
	 In order to linearize the data in Figure Sev-
en, we plot Z2 and ω-2 and propagate error with it. 
This graph noticeably has an ill-fitting regression 
line and seems to involve a linear component 
whose influence is lesser at small values of ω-2. 
Our goodness of fit test reveals a value of 49.6 ≈ 
20, which indicates that the fit is nearly reason-
able but not quite.		
	 Moving forward, we can easily see that Z2 
α 1/ω2 and looking back at equation 5a:

	 This equation involves an capacitor and 
resistor in series where 1/ω2 dominates at small 
frequencies whereas R2 does at large ω. Looking 
at Figure Seven, this description seems to fit the 
bill -- at small frequencies (right-hand side), the 
pattern seems largely linear whereas large fre-
quencies (left-hand side) bottom out into a con-
stant.
	 As the boundary of this transition from 1/
ω2 to R2 is not discretely defined, part of the error 
in the regression fitted to the lowest frequencies 
is attributable to interference from both terms of 
the equation.
	 The plot of tan(φ) versus ω doesn’t yield a 
much prettier fit. Its Chi-Squared value is 5,270 
>> 22; it is not a reasonably linear fit. Based on 
equation 5b, however:

	 Where tan(φ) is proportional to -1/ω. Fig-
ure Eight reflects this pattern, with linear relation-
ship across the graph (keeping note that the hor-
izontal axis is (1/w), however the slope is notably 
positive rather than negative as the equation 
suggests. This is partially attributable to the odd 
spread of points in lower frequencies, which pull 
and push the data quite a bit. This is also backed 
up by its poor Chi-Squared value
	 Frankly, this box’s strongest indicative sign 
towards a capacitor and resistor in series is its 
Chi-Squared test in Figure Seven, but it fits this 
pattern best in comparison to any other others.
	 Pushing forward, we calculate the value 
of the capacitor in similar fashion to that of Box B 
using equation 5a:

|Z|2 = R2 + 1/(ωC)2

tan(φ) = -1/RωC
Figure 8

C2 = 1/ω2(Z2 - R2)

	 We then obtain a mean value for capac-
itance C of 7.21×10-8, or about one nanofarad, 
with a standard deviation of 4.68×10-8. 

Figure 7
(Logarithmic Axes)

Figure 6
(Logarithmic Axes)

This fit looks odd but is actually somewhat reasonable; 
possibly a result of the logarithmic axes accentuating 
small differences.
Χ2 = 49.6 ≈> 20

Χ2 = 5,270 >> 22



BOX E:

	 Figure Nine plots the data obtained in Ta-
ble 3 onto two non-logarithmic axes Z and ω. The 
data in this form is rather unintelligible but the 
regression does seem to vaguely match Z α 1/ω  
with a subtle positive linearity in large ω.
	 Taking indication from this, we invert Z and 
plot ω against Z-1 = Y. Figure Ten then reveals a 
very interesting pattern. The graph seems to hit a 
resonant peak of (ω0,Y0) = (25.3×105, 4.72×103), 
denoted by the vertical orange line.
	 The right side of the peak is decidedly 
linear and fits the regression in the range of data 
points [0,7] comfortably. Its Chi-Squared value is 
5.63 ≈ 18, indicating a reasonable fit. The left-
hand side has an even stronger fit in the range 
[11,21] (evident in the zoomed-in figure within 
Figure Ten) with a Chi-Squared value of 6.86×10-

2 < 18. This is a surprisingly low value, but indi-
cates a very reasonable fit.
	 Taking a clue from the resonant peak, we 
consider equations related to resonant circuits. 
One such example is that of a series resonant 
circuit involving both a capacitor and inductor, 
represented in equation 6a (introduction, page 2) 
as:

	 This already matches the pattern of Figure  
Nine with small ω dominated by the -1/(ωC)2 term 
and large ω forming a linear relationship with ωL.
	 Inverting Z, we get:

	 Which similarly shows small ω increasing 
Y exponetially due to ωC and large ω decreasing 
in a 1/ω fashion.
	 As such, we plot tan(φ) versus ω-ω-1 and 
find that, in Figure Eleven, the pattern very rough-
ly matches equation 6b with a Chi-Squared value 
of 1,000>20:

	 Small values of ω on the left-hand side of 
the graph hijack the slope which becomes much 
more linear in accordance with ωL by in higher 
frequencies of ω when the -1/ωC term vanishes.
	 Moving forward, however, we realize that 
the values of inductance and capacitance, L and 
C, are inextricably linked in the equation and nec-
essarily difficult to isolate. We can, for example, 
assume that at small ω, on the left-hand side ...

Z

Figure 9

|Z|2 = R2 + (ωL - 1/ωC)2

|Y|2 = 1/(R2 + (ωL - 1/ωC)2)

tan(φ) = (1/R)(ωL - 1/ωC)

Figure 10

This plot re-
quires two fits 
on either side 
of the peak, 
colored red (0 
to 7) with Χ2 = 
5.63 ≈ 18 and 
colored green 
(11 to 21) with 
Χ2 = 6.86×10-2 
< 18.

This secondary figure contains a zoomed-in portion of the 
green regression.



... of the resonant peak in Figure 10, the term 1/
ωC dominates, yet ωL will still play a significant 
role in the actual calculable value. Despite this, 
there is no reliable way to calculate these indi-
vidually, so we consign ourselves to calculating 
these with a comfortable margin of error.	
	 The limits of where we begin to calculate 
each value are subjective in similar fashion to the 
limits of where we calculate our regressions.
	 As such, at large ω (data points 0 to 7), we 
vanish the 1/ωC term:

	 And, solving for L:

	 Calculating this term, we recieve a mean 
inductance L of 9.76×10-3 (roughly 10 millihenrys) 
with a standard deviation 2.99×10-3.
	 Correspondently for small ω (data points 
13 to 21), we isolate 1/ωC and solve for C:

	 We arrive at a mean capacitance C of 
3.67×10-9 (roughly 4 nanofarads) with a standard 
deviation of 2.89×10-9.

|Z|2 = R2 + (ωL)2

L2  = (Z2 - R2)/ω2

|Z|2 = R2 + 1/(ωC)2

 C2 = 1/ω2(Z2 - R2)

DISCUSSIONS AND CONCLUSIONS:

	 This last major section is dedicated to var-
ious comments needed on the experiment and, 
largely, to our mistakes: where we went wrong. 
I will discuss possible remedies to our mistakes 
and suggestions for future experiments with simi-
lar goals.
	 First, likely the most important mistake, 
was our error-taking and analysis methods. We 
unknowingly recorded our data without tracking 
uncertainty for every data point and, as such, 
needed to make larger-scale assumptions as to 
the error in each parameter. 
	 This causes an issue: overestimating error 
will weaken the integrity of the goodness-of-fit 
test; underestimating it would misrepresent our 
data and potentially mislead us. I believe that the 
values we chose reflect the variance I observed 
while taking the data and are adequate to esti-
mate the error for our purposes.
	 Frequency was both dialed in and mea-
sured with the oscilloscope and was recorded 
with an accuracy down to 1/1000th. For this 
reason, we decided to consider its error negligi-
ble. Resistance is a little less certain, however 
with testing different values with an ohmmeter 
across the resistance box, an error of about 5Ω 
seems reasonable. The voltage across the resis-
tance and mystery boxes each tended to vary in 
the oscilloscope by no more than 1/10th of a volt. 
We decided to make this our error. Lastly, phase 
tended to vary the most out of all our values; we 
settled on about 10 which represented the majori-
ty of those variations.
	 Again, the ideal situation would have been 
to immediately record these variances as we took 
in our data points. Our assumptions, however, 
are not baseless. I would consider these assump-
tions of error to be reasonabe.
	 Transitioning now into issues arising from 
the treatment of individual boxes, one naturally 
arising question is that of the two sets of data 
recorded of Box B. Does disregarding some part 
of the data constitute deleting it? Does sharing 
data between the sets constitute modification? 
The context shines quite a bit of light on the situa-
tion. We had actually recorded Box B for 20 data 
points before, but made an error in the actual set-
up of our circuit. For that reason, we had already 

Figure 11

This fit significantly disagrees with its given data, 
which is self-evident just looking at the spread of data. 
Interestingly, this 'incorrect' negative skew seems 
partially the result of a single separate point on the 
lower-right.
Χ2 = 1,000 >> 20
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built a program to plot the points and calculate 
a regression. As we plugged our ‘first set’ (Table 
1a) of data points into the program, we imme-
diately noticed the pattern and decided to keep 
the data but start an alternative set at the point 
where we began changing resistance. Our set-
up between the two sets remained unchanged; 
both sets were recorded in the same session 
and, lastly, both sets are used to make different 
arguments that reach the same conclusion in our 
report.
	 One essential recommendation I would 
make for future experimental attempts would be 
to record more consistent coverage across the 
entire range of frequencies. As I mentioned brief-
ly in the analysis of Box B, our measurements 
tended to be very dense at low frequencies and 
sparser at higher frequencies. This is because 
our signal generator increased by multiplicative 
factors (e.g. 10, 100, 1000, ...) and so smaller 
changes at large frequencies were more difficult 
to dial in accurately.
	 One last points which covers all the boxes 
is our issues with apparent outliers appearing 
in our graphs of tan(φ) vs. ω. Quite commonly, 
points appear far outside the general cluster. As 
the domain of the tan function is asymptotic at all 
3πn/2 as n   Z, the sensitivity of values ω at near 
these points is higher. I attribute these ‘outliers’ to 
points of phase which we recorded innaccurately, 
and too close to these asymptotes. I believe a 
more rigorous recording of the uncertainty of the 
phase from the outset would have mitigated the 
effect these points had on the data.

Э



f (Hz) R (Ω) ΔVM (V) ΔVR (V)

3.00×103 100 3.96 2.84

4.00×103 100 4.52 2.60

5.00×103 150 4.32 3.00

6.00×103 150 4.60 2.76

7.00×103 150 4.84 2.48

8.00×103 150 5.00 2.28

9.00×103 150 5.16 2.12

1.00×104 500 3.64 4.28

1.50×104 500 4.44 3.60

2.00×104 500 4.96 2.96

2.50×104 500 5.24 2.252

3.00×104 500 5.36 2.20

4.00×104 1500 4.64 3.88

4.50×104 1500 4.84 3.64

5.00×104 1500 5.00 3.40

6.00×104 1500 5.28 3.00

7.00×104 1500 5.48 2.56

7.50×104 3500 4.08 4.68

8.00×104 3500 5.32 4.48

8.50×104 3500 5.48 4.32

9.00×104 3500 5.64 4.08

9.27×104 3500 5.72 4.04

9.50×104 3500 5.80 3.92

9.75×103 3500 5.92 3.89

1.00×105 3500 5.96 3.64

Box B: Table 1a continued

Box B: Table 1a (first set)

f (Hz) R (Ω) ΔVM (V) ΔVR (V)

51.2 50 2.96 2.80

101 50 3.00 2.80

151 50 3.00 2.76

202 50 3.00 2.76

304 50 3.04 2.76

399 50 3.08 2.72

502 50 3.16 2.72

654 50 3.24 2.68

901 50 3.40 2.56

1.02×103 50 3.52 2.52

1.52×103 50 3.88 2.36

2.03×103 100 3.28 3.20

2.50×103 100 3.60 3.04

TABLES:



f (Hz) R (Ω) ΔVM (V) ΔVR (V) φ

51.2 50 2.96 2.80 1.47

101 50 3.00 2.80 4.25

151 50 3.00 2.76 7.59

202 50 3.00 2.76 9.45

 304 50 3.04 2.76 13.1

 399 50 3.08 2.72 17.3

 502 50 3.16 2.72 22.7

654 50 3.24 2.68 27.1

901 50 3.40 2.56 34.1

1.02×103 50 3.52 2.52 38.1

1.52×103 50 3.88 2.36 48.3

1.99×103 50 4.24 2.12 54.0

2.24×103 50 4.40 2.04 56.1

2.49×103 50 4.56 1.96 58.1

2.75×103 50 4.64 1.84 60.3

3.00×103 50 4.72 1.80 62.9

3.50×103 50 4.88 1.60 65.7

4.00×103 50 5.04 1.48 67.0

4.50×103 50 5.16 1.36 69.4

5.00×103 50 5.24 1.24 70.6

Box B: Table 1b (second set)

f (Hz) R (Ω) ΔVM (V) ΔVR (V) φ

50.0 4.00×104 2.04 3.04 88.0

99.5 4.00×104 2.88 2.32 89.3

152 4.00×104 3.28 1.76 91.1

299 7.00×104 2.12 2.96 91.3

497 7.00×104 2.76 2.36 88.7

799 7.00×104 3.16 1.76 88.0

920 3.00×104 2.40 2.64 87.7

1.55×103 3.00×104 2.96 1.96 85.2

2.00×103 3.00×104 3.16 1.64 84.3

2.47×103 1.00×104 2.20 2.72 84.7

2.94×103 1.00×104 2.44 2.52 84.5

3.98×103 1.00×104 2.72 2.12 80.6

4.95×103 1.00×104 2.84 1.84 79.8

5.99×103 400 2.12 2.76 79.6

7.52×103 400 2.36 2.44 76.8

1.03×104 400 2.56 2.08 67.3

1.43×104 400 2.76 1.68 64.3

1.91×104 100 1.48 2.76 56.6

2.46×104 100 1.64 2.56 55.0

3.00×104 100 1.72 2.44 45.1

4.99×104 100 1.76 2.12 34.0

7.02×104 100 1.80 2.00 22.9

1.00×105 100 1.80 1.92 16.9

Box D: Table 2



f (Hz) R (Ω) ΔVM (V) ΔVR (V) φ

99.8×103 6.00×103 4.24 6.24 121

89.9×103 6.00×103 5.50 5.76 119

80.1×103 6.00×103 5.56 4.88 116

74.5×103 6.00×103 5.72 4.28 116

69.7×103 6.00×103 5.84 3.68 116

64.4×103 6.00×103 5.84 3.08 114

59.8×103 6.00×103 5.80 2.48 113

49.8×103 6.00×103 5.72 1.32 115

40.3×103 200 3.36 3.56 71.4

35.5×103 200 2.06 4.84 85.3

30.1×103 1.50×103 3.92 3.64 85.2

20.0×103 1.50×103 2.12 5.00 88.4

10.4×103 1.50×103 1.08 5.36 94.1

8.05×103 15.0×103 4.12 3.20 83.6

5.94×103 15.0×103 3.64 3.80 83.1

4.06×103 15.0×103 2.92 4.44 88.0

2.52×103 15.0×103 2.06 4.96 92.4

1.01×103 1.00×105 3.60 3.64 79.8

800 1.00×105 3.16 4.00 82.5

548 1.00×105 2.56 4.44 73.7

305 1.00×105 1.68 4.84 67.8

Box E: Table 3


