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Abstract:
This report explores three first-order filters: the low- 

and high-pass passive resistor-capacitor circuits, and the 
active low-pass operational-amplifier circuit.

With an emphasis on analog signals, we discuss the 
effects of these filters including attenuation or amplifica-
tion of input voltage relative to output voltage and the 
phase differences between input and output signals.

With this information, we create logarithmic bode 
plots and phase plots relative to frequency for each of 
the filters. The pattern, steepness and polarity of these 
relationships are discussed, with emphasis on why they 
change between one another.

The concept of a corner frequency -- at which the 
phase is exactly 45 degrees -- is discussed and confirmed 
in the context of our three circuits.



Introduction:
An analog signal follows the patterns described by the 

trigonometric functions of sine and cosine. The differ-
ence between the two, however, is a simple difference in 
their phase ϕ; the delay between their peaks. Cosine can 
be represented by sine simply as cos(t + π/2) = sin(t). 

Differences in phase are the subject of this report. 
In electronic circuits, we can create low- and high-pass 
filters to lag and amplify output signals, with different 
circuits conveying different relationships between the 
phase difference and input frequency.

This report explores three first-order circuits: the 
low- and high-pass RC filters and an op-amp low-pass 
filter. Our goals with each will be to evaluate their corner 
frequency fc and find the phase shift at this frequency. 
Measuring phase in a range of frequencies around fc  
helps us visualize the lagging of the output signal. We 
can similarly collect data for the frequency relative to 
the logarithmic magnitude of the output relative to the 
input signal to create a bode plot. 

Methods:
The goals of this experiment are rather straightfor-

ward. As such, all that requires explanation are the cir-
cuit design and the mathematical principles that dictate 
changes to the output signal.

Figure Two lays out each of the filters’ schematic 
design, from the RC design, consituting simply a resistor 
and capacitor, to the op-amp design, which includes an 
operational amplifier. Hooking up an oscilloscope, we 
measure the voltage signal across the signal generator +

-  
and compare it to the output signal Vout.

When taking data for the phase difference, we can 
simply compare the waveforms from the input and out-
put signals. Taking their maximum voltages allows us to 
create the bode plot, which is be described later.

The corner frequency fc = 1/(2πRC) describes the 
frequency at which the phase difference will theoretically 
be exactly 45 degrees, where R and C are the resistance 
and capacitance of the circuit (Rf and Cf in the case of 
the op-amp circuit). By plotting the changing frequency 
versus the phase difference, we should be able to see this 
relationship around the corner frequency naturally. This 
should thereby give us a sense of the range of frequencies 
we need to explore.

When creating the bode plot, we take the ratio of the 
input and output voltages and convert it to the logarith-
mic decibel (dB) scale. Specifically, we define the magni-
tude M = 20 × log10(Vout/Vin).
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Figure Two: Circuit schema of Low- and High-pass filters
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(a) Low-pass 
RC filter

(b) High-pass 
RC filter

(c) Low-pass operational amplifier filter

These are the circuits which we will be testing in this report. It is worth 
particular note that the values R and C in the passive circuits (not including 
the op-amp) are equivalent to Rf and Cf in the op-amp filter. R in this last 
circuit (c) is different and discussed later when appropriate.

The op-amp circuit also involves a voltage difference which powers the 
circuit and allows it to amplify the signal given to it.

Figure One: Difference in analog phase

ϕ

This simple diagram 
illustrates two analog 
signals and the phase 
difference between 
them. All analog 
signals will follow the 
sine function, with the 
cosine function simply 
the same function with 
a phase difference of 
+ π/2.



For this experiment, we set the capacitance in all the 
circuits to be 100 nanoFarads. From here, we can choose 
different resistances to affect fc and thereby the range of 
frequencies over which the phase change plays out.

The differences between low- and high-pass RC and 
op-amp filters are the slopes of the phase and bode plots. 
As will be illustrated in the subsequent section, the po-
larity of these slopes will vary between each circuit.

Results:

The Low-Pass RC filter

With the low-pass RC filter, we will explore two dif-
ferent resistances -- one at high resistance and another at 
a very low resistance; these being 2,200 and 50 Ω.

For each of these, we need to determine a corner fre-
quency to know beforehand the range of frequencies we 
want to explore.

Starting with the higher resistance we can deduce fc 
= 707 Hz. With this target frequency in mind, we can 
collect data to produce the plots in Figure Three.

As we can see, the bode plot appears quite linear, with 
a consequent linear regression of r =  0.995 indicating 
very high correlation. The phase plot, however, takes the 
shape of a logarithmic curve. Regardless, each plot has a 
positive polarity.

The corner frequency of the 50 Ω circuit yields a 
much higher value  fc = 31,830 Hz.

Figure Four plots this data, however it’s immediately 
evident that the data is all over the place. This is a mis-
take made in the data collection stage -- a large range of 
frequencies are covered but fail to include high enough 
resolution around the corner frequency. Due to limited 
lab time, another set of data could not be collected.

With a rather incoherent dataset, it’s impossible to 
draw any conclusions from these plots. Future experi-
ments would be well-served to increase the resolution 
around the corner frequency -- say, in the hundreds 
rather than the thousands.

Figure Three: Plots for the low-pass RC filter at 2.2 kΩ

(a) Bode (magnitude) 
vs. frequency

(b) Phase vs. 
frequency

Figure Four: Plots for the low-pass RC filter at 50 Ω

(a) Bode 
(magnitude) 
vs. frequency

(b) Phase vs. 
frequency

For each the bode (a) and phase (b) plots we are able to see the effect 
that frequency has on the relative magnitude and analog phase difference 
respectively. We do this for two different resistances in our low-pass RC cir-
cuit, however the lower resistance has a very high corner frequency around 
which the data collection was not of high enough resolution. As such, the 
pattern seems to break down, however we can assume that around 31,830 
Hz -- within a few hundred Hz -- that the relationships would resemble 
Figure Three.



The High-Pass RC filter

Similar to the low-pass filter, we can choose two 
resistances to run through the high-pass iteration of the 
circuit. In our case, we choose 4,700 and 470 Ω to test 
this filter.

The first, 4.7 kΩ, evaluates a corner frequency fc = 
339 Hz. The data collected around this frequency gives 
us Figure Five. 

As we can see, this graph differs from Figure Three 
specifically in that the slopes of the high-pass filters’ plots 
have a negative polarity. Likewise, both the bode and 
phase plots take on a much more exponential pattern. In 
this case, it appears as a decaying exponential for both of 
them.

The pattern continues when we plug in a 470 Ω resis-
tor. With a corner frequency of fc = 3.386 Hz.

Figure Six shows the data collected for this set; almost 
a mirror image of the pattern shown in the higher resis-
tance circuit but with a different range of frequencies.

Still, it’s worth noting the strong similarity in the 
phase and bode values as the frequency increases. It 
suggests there is a direct proportionality; that is to say, 
the higher resistance ‘stretches’ the range over which the 
phase and bode plots vary.

Figure Five: Plots for the high-pass RC filter at 4.7 kΩ

(a) Bode 
(magnitude) 
vs. frequency

(b) Phase vs. 
frequency

Figure Six: Plots for the high-pass RC filter at 470 Ω

(a) Bode 
(magnitude) 
vs. frequency

(b) Phase vs. 
frequency

Among the bode and phase plots for this circuit, we can see a high 
correlation in their polarity and general steepness. It suggests that they are 
each factors of one another; the plot ‘stretching’ to fit the corner frequency 
depending on the resistance and capacitance.



The Low-Pass Op-Amp filter

With the Op-Amp filter, we include a couple more 
elements in the circuit that aren’t included in Figure Two 
(c). In order to power the op-amp element, we run a 
voltage across it through two capacitors, as seen in Figure 
Seven.

With Cf = 100 nF and our choice of a resistance Rf 
= 39 kΩ, we get a corner frequency fc = 40.8 Hz. From 
here, we want to choose an adequate resistor for R. We 
want to limit the gain G = 20 × log10(Rf/R) < 24 dB. 
With some simple algebra, we get a value R ≈ 10 kΩ.

Using this value, and choosing frequencies around fc, 
we get the data which is plotted in Figure Eight.

We can easily see the specifics of how this filter differs 
from the others. Firstly, in contrast with the other passive 
circuits, the op-amp can amplify the signal, decreasing 
the proportionality between Vin/Vout; the bode plot starts 
with negative magnitude and has a positive polarity.

Likewise, the phase plot has bounds of 90 to 180 
compared to the passive filters’ 0 to 90 degrees. Mean-
while, in contrast to the others, the polarity of the phase 
plot is actually negative -- opposite to the bode plot.
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Figure Seven: Plots for the high-pass RC filter at 4.7 kΩ
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In order to power the op-amp, we 
need to include a potential difference 
bypassed by capacitors on each side.

Cf remains the same as our previous 
filters with the addition of another resistor 
which moderates the gain in our system.

We choose this resistor R relative to Rf 
at 39 kΩ, such that R is 10 kΩ.

Figure Eight: Plots for the high-pass RC filter at 4.7 kΩ

(a) Bode 
(magnitude) 
vs. frequency

(b) Phase vs. 
frequency

In contrast to the other filters, the polarities of these plots are opposite 
one another, with the bode plot in a very linear and positive pattern and the 
phase plot in an expontial decay as frequency increases.



Discussion:

Having seen each of the first-order filters we explored 
and analyzed their bode and phase plots, we can now 
draw some conclusions. 

The first and most important point is the breakdown 
of a pattern in the lower-resistance trial of the low-pass 
filter. Having been unable to investigate the particular 
corner frequency this circuit has, we cannot draw any 
conclusions for it. Perhaps this indicates a breakdown 
compared to our other filters if there is no pattern 
present outside the small range of values around fc. It 
is difficult to say, however under more accomodating 
circumstances, this would have been re-investigated in 
the course of this report. Due to external factors, how-
ever, this was not possible. I would recommend future 
experiments to investigate this area more fully. For now, 
however, we exclude this data from our subsequent con-
clusions. 

The second point is rather straightforward: the polar-
ities of each of the plots. For each the low- and high-
pass filters, their bode and phase plots were of the same 
polarity of slope. The op-amp filter, however, had slopes 
of opposite polarities. This is in part because of the direct 
function of the op-amp to amplify the input signal. As 
such, the bode plot starts negative and climbs to zero, as 
opposed to starting at zero and climbing to a maximum 
like the passive low-pass filter.

Lastly, the data surrounding this project lets us con-
firm the theory of the corner frequency around which 
the phase should be 45 degrees. Having seen a cohesive 
pattern and strong confirmation of this phenomena 
around each corner frequency for each plot, we can con-
clude that this theorem is accurate to our measurements. 


