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Abstract:
This report explores the behavior of RLC circuits. Par-

allel RLC circuits have a damping factor inversely pro-
portional to their resistance and capacitance. Conversely, 
series RLC circuits have a damping factor proportional 
to their resistance over the inductance.

The level of damping can cause under-, over- and crit-
ical damping; each of which have separate and specific 
behaviors relative to one another.

By creating these circuits and feeding a square wave 
through the circuit, we can measure the RLC circuits’ 
response and, by varying the resistance, determine which 
circuits match the qualities of an under-, over- or criti-
cally damped system.

This report explores the relationships between their 
properties and verifies a couples basic mathematical prin-
ciples of the response on an RLC circuit.



Introduction:
Figure One shows the RLC circuit, which contains 

either in parallel or in series a resistor (R), inductor (L) 
and capacitor (C). The subject of this report is the re-
sponse of an RLC circuit to the square step function of a 
voltage or current source. This, in essence, simulates the 
action of flipping a switch on or off, at a certain frequen-
cy interval.

Depending on the configuration of an RLC circuit, 
the response can vary in three primary ways: either by 
being overdamped, critically damped or underdamped. 
Each of these cases are dependent on the same funda-
mental properties of the circuit and exhibit different 
patterns linked to the rate at which their signals are 
attenuated. The mathematical basis for their behavior is 
discussed further in Methods. For now, Figure Two suffic-
es to demonstrate the general behavior of overdamped, 
underdamped and critically damped analog oscillatory 
signals.

Importantly, a non-damped source has a constant 
amplitude compared to a damped source, for which 
amplitude decreases steadily as an exponential function 
of the damping constant. An underdamped source will 
continue to oscillate until it converges on equilibrium. A 
critically damped source does not oscillate, and con-
verges slowly over a single wave. The overdamped source 
does not equilibrate normally. 

Importantly, the damping factor is found from the 
characteristic equation  such that 
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Figure One: Parallel and series RLC circuits

Figure Two: Damped oscillators
There are three types of damped systems: underdamped, critically 

damped and overdamped. They are qualified by the amount that the 
wavefunction overshoots or meets the equilibrium point (dashed).

The underdamped case (a) meets and exceeds this point be-
fore eventually resting at equilibrium. The critically damped case 
(b) meets exactly the equilibrium point, with no overshoot. The 
overdamped case (c) is damped so much that it does not meet the 
equilibrium point and reaches a different steady-state. (a)

(c)(b)

These are the RLC circuits we will be analyzing through this lab 
report. They are the parallel (a) and series (b) RLC circuits, which 
each run a voltimeter across a different component: the inductor in 
the parallel case; the capacitor in the series case.

(a)

(b)

We can define the undamped resonant frequency 

 and, looking at Figure One, resolve the en-
ergy disappated by the resistor for each the parallel and 

series cases to be  and , respec-
tively.



Importantly, we can define the damping qualities of 
the oscillator in terms of the α coefficient:

  such that the 
damped resonant frequency  
(inversely proportional to the damping factor).

The purpose of this lab report is to assemble each of 
the schematics in Figure One and, by varying the re-
sistor, apply each different damping case to verify and 
investigate the damping behavior of RLC circuits.

We determine our resistance by means of solving for 
a given value ζ where . A value of 1 will 
represent the critically damped case, whereas the under- 
or overdamped cases will be represented when ζ ≠ 1.

In order to comprehensively analyze the damping 
qualities of these waveforms, we will need to gather a 
few parameters. Each of them will have a rising-time, 
or time within which 10 and 90% of the equilibrium 
voltage is reached. We can use this data to compute the 

dead-time  (or indeed any arbitrary lo-
cale t1,t2 for which we can measure respective voltages).

We will also note overshoot, or the percentage by 
which the maximum exceeds the steady-state.

Figure Three gives an example of the underdamped 
case for a square wave. Underdamped cases also have a 
discernible period, which we can measure as well. 

Figure Three: The underdamped case - example
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The overdamped case, illustrating the analysis of any individual 
damped response. We measure overshoot and dead-time of each in-
dividual waveform; period in addition for every underdamped case.

Methods:
Using all of the underlying mathematics from above, 

we need only define our values for the capacitor and 
inductor. From there we can calculate our undamped 
resonant frequency which informs our choice of frequen-
cy for our square wave generator.

We chose a capacitor rated 1 nF and an inductor rated 
10 µH. Therefore, our undamped resonant frequen-
cy   ω0 is roughly 0.3 megaHertz/2π. We can therefore 
choose a frequency of about a factor slower to allow time 
to for the oscillator’s behavior to be fully displayed -- 
about 1 kHz should suffice.

From here, we need to combine the equations for α 
and ζ to solve for the resistances needed to observe 
certain behavior for each circuit. Solving algebraically 
and solving, we get the following correspondent re-
sistances for the parallel circuit RP = 100, 50 and 25Ω. 
Similarly for the series circuit, Rs = 100, 200 and 400Ω.

There are two additional principles we will consid-
er when analyzing these circuits. The first is to verify 
that α ~ fd. As α increases, we can expect fewer cycles to 

reach the steady-state. second, we will experimentally 
determine RC, representing the resistance necessary to 
produce critical damping, for each the parallel and series 
circuits.

Specifically in the case of the parallel circuit, the 
response will occur more familiar form when represented 
as the current across the inductor. As shown in Figure 
One (a), the signal generator itself is a current. The 
voltage reading across the inductor, such as the critically 
damped case, appears like that shown in Figure Four. 
We need to convert our voltage reading to a current 
waveform, and we can use the following relationship to 
determine the current value in at each individual value of 

time n such that .

Figure Four: Voltage response of a parallel RLC, underdamped

As we can see, the voltage steady-state over the inductor is at 
zero. As such, the spike makes evaluation of our parameters more 
difficult.
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Results:
Let’s start with the parallel case. 

At 25 Ω, we get the underdamped case as as shown in 
Figure Five. Let’s break down the involved analysis. We 
can easily measure the period of oscillation for this un-
derdamped case at the first and second peak, for which 
we resolve the period T = 6.45 × 10-7 s = 645 ns.

Next is the choice of an equilibrium position. This 
is easiest to do with the oscilloscope, by measuring the 
equilibrium position of the entire square wave, and ap-
plying that information to our graph.

Next, we take the maximum and minimum of the 
graph. The difference between the max and equilibrium 
will represent our final current iF. Lastly, we take two 
points in roughly 10% and 90% zones of our signal and 
calculate voltage differences from the minimum for each 
and the time difference between them. This gives us all 
the parameters necessary for the calculation of τ, which 
we find to be τ = 9.93 × 10-8 s = 99.3 ns for this case.

We also take the ratio of the maximum over the equi-
librium voltage to find our overshoot at 34%.

This analysis for dead-time and overshoot are applica-
ble to the remaining two cases identically.

As such, we move onto the 50 Ω, critically damped 
case shown in Figure Six. As we can expect, the over-
shoot is visibly quite smaller and there is no additional 
oscillation.

Using identical methodology to the underdamped 
case, we find the overshoot to be just 6.7% and the 
dead-time τ = 1.31 × 10-7 s = 131 ns.

Two last notes worth mentioning on the method-
ological side of things involve the signal generator and 
the data collection methods. The first is that the signal 
generator itself contributes roughly 50 Ω of resistance. 
For this reason, when we represent RP or RS, they already 
include the contribution of the signal generator; we 
simply create the circuit representing the signal generator 
as a parallel or series resistor. Especially in the parallel 
case, for example, we can represent a signal generator in 
parallel with another 50 Ω resistor as an equivalent 25 Ω 
resistor.

The second is that, when collecting data for the par-
allel case, it becomes necessary to analyze the data using 
programming tools. For this reason, analysis for the par-
allel circuit is performed using Python while the analysis 
of the series circuit is done in-situ with the oscilloscope. 

Figure Five: Underdamped response of parallel RLC circuit

The underdamped current response of the inductor in a parallel 
RLC circuit, labeled with the relevant information needed to ana-
lyze for overshoot and dead-time. In these cases, we calculate maxi-
mum, final and relevant voltages as a difference from the minimum 
voltage of the waveform.

Figure Six: Critically damped response of parallel RLC circuit

The critically-damped current response of the inductor in a 
parallel RLC circuit, labeled with the relevant information needed 
to analyze for overshoot and dead-time. The rigorous damping effect 
minimizes the overshoot and prevents any additional oscillation 
outside of the main overshoot.

As the critically damped case does not have any addi-
tional oscillations, a calculation for period is infeasible. 
It is worth discussing, however, how much this choice 
of RC abides by the criterion for critical damping. We 
approached the critical damping point by use of two 
different methods: the calculation mentioned earlier in 
Methods, and the use of a potentiometer to observe the 
continuous change in the damping factor. Approaching 
the critical ‘appearance,’ we were able to verify that the 
appropriate 50 Ω theoretical resistance is accurate to our 
expectations of how critical damping should appear. Spe-
cifically, the small overshoot and gradual but accelerating 
approach of the steady-state are significant indicators.



At 200 Ω, we get the overdamped case, shown in Fig-
ure Seven. This case has a noticeably smaller overshoot, 
with a more gradual peak and a much slower tendency 
towards the steady-state. In fact, the equilibrium cur-
rent listed for the overdamped case does not necessarily 
represent the steady-state. The signal continues to damp 
slowly throughout the length of the packet.

Using identical analysis as before, we find the relative 
overshoot to be just 2%. The waveform’s dead-time is τ = 
3.28 × 10-8 s = 328 ns

Looking towards the series circuit, Figure Eight shows 
the underdamped case with a resistance RS of 100 Ω. It’s 
important to note that, here, we deal with voltage rather 
than current. The oscilloscope is placed across the capac-
itor terminals as opposed to the inductor. As we can see 
clearly, the period of oscillation is 840 ns.

Taking an identical approach to that performed in 
the parallel cases, we obtain an overshoot of 15% and a 
dead-time τ = 119 ns.

The instantaneous reading of the oscilloscope allows 
for us to install a potentiometer and quite easily see the 
variation of the amplitude and period of the oscillating 
component of the underdamped waveform. With this, 
we observed that the smaller the resistance, and therefore 
the smaller the resistor energy loss α ~ RS, the higher the 
damped angular frequency ωd. As we know fd ~ ωd, this 
verifies that α is proportional to the inverse of fd.

For the critically damped case, we choose a resistance 
200 Ω, which we experimentally verify using the same 
methodology as described in the critically damped paral-
lel circuit.

As shown in Figure Nine, we get an overshoot of just 
under 2% and a dead-time of roughly 162 ns.

Our last case is the overdamped series RLC circuit at 
400 Ω, which is shown in Figure Ten on the next page. 
As we can see, there is a very minimally discernible over-
shoot, which is calculated to be just 0.7%. The dead-
time comes out to 471 ns.

Figure Seven: Overdamped response of parallel RLC circuit

The overdamped current response of the inductor in a parallel 
RLC circuit, labeled with the relevant information needed to ana-
lyze for overshoot and dead-time. 

Figure Eight: Underdamped response of series RLC circuit

An image of the oscilloscope reading for the underdamped 
response of a series RLC circuit. This particular image shows the 
cursors placed around the first peak and trough of the oscillation. 
Doubling this, we can calculate the period.

Figure Nine: Critically damped response of series RLC circuit

This critically damped case demonstrates a much smaller 
overshoot and a no discernible oscillations as the waveform peaks. 
Instead, it slowly decays back to the steady state.



Figure Ten: Overdamped response of series RLC circuit

The underdamped case is very distinguishable. There is practi-
cally no overshoot and the curve is very shallow. The maximum is 
slightly higher than the steady-state, and approaches very slowly.

Discussion of Results:
The results of this experiment can be measured by two 

metrics: first, the analysis of the individual cases with 
respect to α, fd and f0; second, with respect to our addi-
tional principles that α ~ 1/fd and the verification of RC 
for our circuits.

With each of our analyses, we were able to verify the 
relationship α has with ω0~ f0 as described by the under-
lying mathematics. By discovering under-, critically and 
over-damped cases by calculation of α and ζ, we verify 
the conceptual basis. Additionally, we strengthen the 
case for the second principle, which is experimentally 
confirmed in the critically-damped parallel circuit.

Having a theoretical basis for α, we can explore its 
relationship in detail with fd. As explained by the un-
derdamped case for the series circuit, we can verify the 
inverse proportionality between the them. We can, 
however, also logically think through the circuits’ form 
as a result of the damping factor. As the value of α 
increases from a low value (underdamped), the oscilla-
tions decrease until they are practically absent (critical-
ly-damped) and, finally, fully non-present (overdamped). 
Both the parallel and series circuits demonstrate this 
relationship.

As such, while this isn’t a deeply quantitative analysis 
of the phenomena described in this paper, the somewhat 
qualitative conclusions made from the analysis of these 
responses meets our standards for the verification of our 
principles and the investigation of the behavior of these 
waveform responses.

Conclusion:
This report’s goal was to explore the responses of 

parallel and series RLC circuits to a square wave as they 
experience under-, critically- and over-damped behavior.  
We connected these behaviors to their correspondent 
mathematical relationships to the energy lost by the 
resistor and the undamped resonant frequency of the 
circuit. In doing so, we can evaluate the degree to which 
a signal will be damped and choose resistances to target 
these behaviors in experimental settings.

We were able to analyze the qualities of each of these 
cases and, importantly, were able to verify the mathe-
matical relationships between them. The success of this 
experiment, as mentioned before, isn’t in the quantitative 
results but rather the verification of these mathematical 
principles and the core concepts behind them.


