
Exploration of RC First-Order 
Time-Constant Circuits

February 18, 2020.
By Xavier Boluna

ECE 101 :: Professor Sara Abrahamsson :: Juliana Hernandez

Experimentation performed together with Quinn Schmidt

Abstract:
This report explores the behavior of RC circuits. RC 

circuits involve a resistor and a capacitor in series with a 
voltage source. The direction of the current determines it 
as a low- or high-pass filter with different properties for 
each.

These filters correspond to an exponential behavior on 
each rising edge of a square voltage signal, which can be 
paramterized and compared to experimental readings.

For the low- and high-pass filters we determined an 
error of roughly 7 and 40% respectively. After consider-
ing factors which could contribute to the error, we draw 
the conclusion that the low-pass filter agrees however the 
high-pass filter is inconclusive. More research is recom-
mended to authoritatively conclude the latter.
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The Capacitor

Charge q is transferred as i = 
dq/dt = (εA/d)(dv/dt)



Inroduction:
Capacitors, at a fundamental level, are simply two 

plates of a fixed area A and separation d. Under DC 
circumstances, a potential difference applied across this 
element acts as if the capacitor is an open circuit -- a cut 
wire. Varying the voltage in AC conditions, however, 
creates a unique phenomena: the current flow becomes 
proportional to the derivative of the voltage with respect 
to time. Most importantly, a capacitor charges as voltage 
is applied across it; meaning there is a certain time before 
a square voltage pulse will peak.

The focus of this report is to explore the contribution 
of a capacitor when put into an RC circuit. This circuit 
includes both a resistor and a capacitor and its behav-
ior depends on the direction of the current (see Figure 
One). 

A current which reaches the capacitor before the 
resistor is called the low-pass filter. The voltage across the 
capacitor in each half-cycle begins at zero and logarith-
mically grows to peak amplitude.

Conversely, a current which reaches the resistor first 
defines the high-pass filter; therein, the voltage across the 
resistor begins at its peak and exponentially decreases to 
zero.
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Figure Two

Methods:
We are using a square-wave alternating current, which 

we arbitrarily set to a peak amplitude of 10V.
The particular qualities of a low- or high-pass filter 

are determined by the capacitor and resistor. The τ value 
parameterizes the time needed to reach exponentially 
proportional increments and is defined by the product of 
the resistance and capacitance.

Let’s take the example of Figure Two for a low-pass 
filter. This filter will be defined by the Vi - Vi(e

-t/ τ) where 
Vi is the peak amplitude of the AC current. We can see 
that at intervals of τ, the denominators cancel and we get 
values 1/e, 1/e2 and so on to 1/e5. This last value reaches 
99.3% of the amplitude of the function and so we can 
use this as a general reference point for how to determine 
our frequency. 

In our case, both our resistor and capacitor are rat-
ed for a value τ = RC = (100Ω)(1μF) = 1 millisecond. 
A frequency of the interval needed to reach 5τ exactly 
would be fmax = 1/5τ = 2kHz. We can take a frequency 
about an order smaller as our signal generator frequency 
such that fSG = 200Hz to ensure that we get the entire 
rise, peak and stabilization.

The key data to consider moving forward is our 
frequency fSG = 200Hz, our square-wave AC voltage          

The schematics and correspondent waveform for the voltage 
read by the voltimeter are shown for the Low- and High-
Pass filters.

The theoretical regression for a low-pass filter, whose general 
dependence on the τ is similar for the high-pass filter. This 
value corresponds to both the product of the capacitance and 
resistance and to the inverse exponentiation of e (e.g. 1/e2).

Exponential behavior of the low-pass filter

Vi = 10V and lastly the value τ = 1ms by which we will 
scale our time axes.



The Low-Pass Filter:
We begin with the low-pass filter shown in Figure 

One (a). As we have discussed already, our function f(t) 
= Vi - Vi(e

-t/τ). As such, for each integer multiple of τ, 
f(n) = 10 - 10(e-n).

As with Figure Two, we can determine the theoretical 
voltage at each value n. We can then take our oscillo-
scope readings and measure the voltage across the capac-
itor at each increment of τ. The following table collates 
this data:

τ Theoretical (V) Experimental (V) % Difference
1 6.32 5.43 14%
2 8.64 7.75 10%
3 9.50 8.80 7.3%
4 98.2 9.45 3.8%
5 99.3 9.85 0.81%

average: 7.3%
Figure Three plots this information against the curve 

of our theoretical function f(t). 
As we would expect our error decreases as the overall 

voltage increases and the capacitor approaches its maxi-
mum voltage. Even so, its maximum difference reaches 
roughly 14% at nearly a full volt difference from theory.

Ordinarily, this would indicate a significant deviation 
from theory however the behavior which it very closely 
approaches the theoretical maximum suggests that the 
pattern is coherent.

Figure Three

The High-Pass Filter:
Our function for the high-pass filter differs in that f(t) 

= Vi(e
-t/τ). Therefore each multiple of τ, f(n) = 10(e-n).

Plugging values into our function f(n) we can find 
theoretical values. We can then take our oscilloscope 
readings and measure the voltage across the resistor at 
each increment of τ. The following table collates this 
data:

τ Theoretical (V) Experimental (V) % Difference
1 3.67 3.21 12.8%
2 1.35 1.68 24.4%
3 0.50 0.87 74%
4 0.18 0.27 50%
5 0.07 0.11 64%

average: 40%
This percentage deviation from theory appears damn-

ing, however the pattern demonstrated by Figure Four 

Figure Four

which graphs our theoretical function f(t) against our 
data suggests a consistent pattern approaching zero. De-
viations tend to be about the theoretical predictions and 
those deviations are relative to the small values which we 
are measuring, a point that we consider more deeply in 
the subsequent section.

This figure compares the theoretical regression of the low-pass 
filter to the experimental data points collected for it.

This figure compares the theoretical regression of the high-
pass filter to the experimental data points collected for it.

Low-pass filter: theoretical vs. experimental

High-pass filter: theoretical vs. experimental



Discussion:
The possible sources of our error is the primary point 

to be discussed before we can consider the level of agree-
ment our data enjoys with theory.

For each of our datasets, the error corresponds excep-
tionally with the actual magnitude of the data involved. 
The Low-Pass filter displays this exceptionally well, with 
smaller data points bearing greater error (e.g. 5.43V & a 
difference of 12.3%) whereas larger points have smaller 
error. Therefore part of this discrepancy can be attributed 
to the random error of our data collection efforts. As we 
collect smaller magnitude datapoints, the contribution 
of random error at a generally constant level of noise 
exacerbates the fractional difference as a proportion of a 
smaller value. As such, we can conclude that part of our 
error is the fault of random error when recording data.

While this holds true, however, random error does not 
assume the full fault of our error. This idea breaks down 
moreso around the high-pass filter dataset. Moreover we 
can verify its contribution by taking the raw numerical 
difference between our theoretical and experimental data 
and seeing if it is generally consistent. 

For example, with the low-pass filter:
τ Theoretical (V) Experimental (V) Difference
1 6.32 5.43 0.89
2 8.64 7.75 0.89
3 9.50 8.80 0.7
4 9.82 9.45 0.37
5 9.93 9.85 0.08
Unfortunately, it is not consistent enough. Therefore 

we can conclude that though it is a contributing factor, 
there exists another influence that works in tandem with 
this error.

The likeliest possibility is depicted in Figure Five, 
which shows the input from the signal generator (green) 
and the correspondent voltage change across the resistor 
(yellow). There is an important factor in this image: the 
amplitude of the noise as the wave stabilizes.

This is purely practical in that we can expect a differ-
ent reading when measuring the value at the top, middle 
or bottom of the line. We chose to measure it from the 
top.

Figure Five
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Lower measurements could be systematically off by, 
say, 0.89 volts. However, assuming the ‘true’ voltage lies 
somewhere in the middle of the line, our upper reading 
will continuously increase relative to the rest. As such, a 
phenomena where values near noisier areas of the line are 
shifted upwards can appear.

In sum, our error could possibly be accounted by a 
combination of random error and proportionalized sys-
temic error from our oscilloscope measurements.

The question, then, of whether our measurements 
agree with theory is still open. From the facts, we cannot 
conclusively say that the data fits agreement, however 
relative to what we know, the error seems at least within 
reason.

With this motivation, this report concludes the rela-
tionship to be tenuous but reasonable for the low-pass 
filter and inconclusive for the high-pass filter; though I 
am optimistic that future experimentation will reveal a 
more consistent correlation for the latter.

Oscilloscope channels across the high-pass

This image of an oscilloscope shows the waveforms for both 
the input signal generator and the voltage across the resistor 
of a high-pass filter circuit.


