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Fundamentally, the study of electronic circuits rests 
on several key mathematical relationships which describe 
the interactions between current, voltage and resistance. 
This report tests these relationships and their corollaries 
across several circuits designs, including a T-network and 
a Wheatstone Bridge.

In the first section, we will verify Kirchoff’s Voltage & 
Current Laws, Ohm’s Law and the Current & Voltage 
Divider Theorems.

In the second, we treat the differences between sin-
gle-ended, differential and common-mode voltages.

Lastly, we describe the property of superposition and 
their relationship with linearity.

Verification of basic laws & derived quantities.:
Let’s describe our first basic circuit: the T-Network. 

Shown in Figure One, the T-Network is composed of a 
single resistor in series with two additional resistors in 
parallel. An input voltage is drawn across the first two 
open terminals.

For the purposes of our experiment, we elected to use 
resistors of equal resistance: R1 = R2 = R3 = 100Ω. 

Our first goal is to consider Kirchoff’s Current and 
Voltage Laws. The former is defined at a node and 
expects for all the currents entering it to equal to those 
exiting it. This is to say, in Figure One, if i1 enters n1 and 
i2 and i3 exit, we can expect i1 - i2 - i3 = 0.

In order to measure the respective currents across the 
node, we use an ammeter (as shown in Figure Two).

Following this guideline, we run a voltage of 10V 
across the system and determine:

i1 64.9 mA
i2 32.7 mA
i3 32.8 mA
Σi = i1 - i2 - i3 -0.6 mA ≈ 0

notably, our currents sum to just under a milliAmp, 
amounting to a roughly 1% error from our input current 
i1. For this reason, we can accept this margin as the result 
of random error.

Next, we can test Kirchoff’s Voltage Law. This law 
operates across ‘loops’ with reference to the input volt-
age. Across Loop 1 (in Figure One), for example, the law 
functions such that VInput = V1 + V3; ensuring essentially 
that voltage is conserved. Similarly across Loop 2, VInput 
= V1 + V2.

Each element -- or in our case, resistor -- produces 
a voltage drop across its terminals which can be mea-
sured with a voltimeter connected in parallel (see Figure 
Three).
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Running again, a voltage of 10V across the input, we 
determine:

V1 6.65V

V2 3.34V

V3 3.34V

loop 1: Vinput - V1 - V3 0.04V ≈ 0

loop 2: Vinput - V1 - V2 0.04V ≈ 0
Again, as our error amounts to just 0.4% of our input 

voltage, we can consider this random error. 
Another fundamental law of circuitry is the conser-

vation of Power, or the Work per unit time. Power is 
defined as the product of Voltage and Current (P = iV), 
which means we can determine this value using the data 
we have already collected. Power (on a non-negligible 
scale) is released or emitted by the elements across a cir-
cuit -- in our case, the resistors and signal generator.

Pinput = i(Vinput) (9.99 V)(64.9 mA) 
= 648 mW

P1 434 mW
P2 109 mW
P3 108 mW
ΣP = Pinput - P1 - P2 - P3 3 mW ≈ 0

Our error here is actually 0.4% from the input power, 
again falling within the bounds of random error.

As such, we are able to confidently verify Kirchoff’s 
Voltage & Current Laws in addition to Conservation of 
Power in our practical tests to a certainty of up to 1%.

Another worthwhile venture is to measure the exper-
imental resistance of the resistors we have been using. 
This is easily possible using Ohm’s Law. Again, we have 
already measured current and voltage for each of the 
elements and so can easily solve for R = V/i. Note that 
the listed resistance for each of these is 100 Ω.

R2 102 Ω error = 2%

R3 103 Ω 3%

R1 102 Ω 2%
Here, we see our error finally exceed 1%. It is, how-

ever, normal to expect some variation. These imperfec-
tions are unlikely to have impacted our calculations for 
Kirchoff’s Laws or that of Conservation of Power.

Next, using these values, we can compute the equiva-
lent resistance of the circuit to the experimental reading 
we obtain.

Our second and third resistors are in parallel so their 

equivalent resistance is represented by (R2 × R3)/(R2 + 
R3) = 51 Ω. This equivalent resistance is in series with 
our first resistor, so the total resistance of the circuit is 
102 Ω + 51 Ω = 153 Ω.

For our experimental reading, Rexp = (9.99 V)/
(64.9mA) = 154 Ω. We can thusly conclude that our 
0.7% difference is the result of random error.

Lastly, for this circuit, we explore the Current & Volt-
age Divider Theorems. 

The Current Divider Theorem argues that, following 
Figure One: i2 = (i1R3) / (R2 + R3) and i3 = (i1R2) / (R2 + 
R3). This is easy to check with our recorded values. As 
we know R2 ≈ R3, we simplify i2 = i3 = i1 (100/200) = 
32.5 mA. 

As we have already recorded measurements for i2 and 
i3, we can compare them to see an error of up to 1%.

The Voltage Divider Theorem requires that we simpli-
fy our diagram to two resistor elements in series. Similar-
ly to how we did before for R2 and R3, Req = 50 Ω.

The voltage differential across the second resistor  Vout 
= (Ventirety Req) / (R1 + Req).

Using data from the previous experiments, we can 
determine Vout = (9.99V)(50/150) = 3.33 V. This value 
conforms to our readings of V2 = V3 = 3.34 V wherein 
voltage does not divide between parallel branches. The 
error here is just 0.3%.
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The Voltage Divider Theorem encapsulates 
the voltage across an element within series 

circuit.



Single-ended & Differential Circuits:
This experiment’s basis is the Wheatstone Bridge, pic-

tured in Figure Five (a). Note that R4 is a variable resistor 
-- or, in our case, a potentiometer. The actual creation 
of this schematic can vary largely and (b) is a labeled 
picture of our own version of this circuit. 

Consider Vd = V23 to be where the voltimeter is linked 
up, measuring the voltage differential between each arm. 

The differential voltage Vd is defined by the relation-
ship V2 - V3. The common-mode voltage follows Vcm = 
(V2 + V3)/2.

In the first trial, we dialed the potentiometer (R4) to 
its highest resistance and ran 10 V through the circuit:

V2 5.01 V

V3 9.86 V

experimental Vd -4.84 V

Vd = V2 - V3 -4.85 V

Vcm = (V2 + V3)/2 7.44 V
wherein  it is immediately apparent that the rela-

tionship described for Vd is accurate to the theoretical 
measurement to a 0.2% difference.

Following in the second trial with the lowest resis-
tance possible:

V2 5.00 V

V3 35 mV

experimental Vd 4.96 V

Vd = V2 - V3 4.97 V

Vcm = (V2 + V3)/2 2.52 V
Again, we see that the differential voltage differs by 

just 0.2%.
This matches our understanding of single-ended 

voltages and differential voltages. A single-ended voltage 
difference is like that measured at nodes 2 and 3 -- their 
respective voltage drops are independent of the other. 

The differential voltage, however, is intrinsically 
dependent by the other. It is the difference and, as in 
the case of the first trial, a high resistance in the ‘right’ 
branch forces the majority of the voltage to the ‘left 
branch.’ This is why Vd becomes negative, as V3 > V2. 
The opposite is true for the second trial.

The common-mode voltage describes the average of 
the two single-ended voltages. The variation therein is 
relevant to their relationship with R4. For example, V2 is 
connected in series and so bears no change from one re-
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The voltimeter is attached to points 2 and 3 to measure 
the voltage drop V23 between each arm of the bridge.
Each of the resistors is rated at 100 Ω.

sistance to another. V3, however, is connected and thusly 
experiences a drastic change -- experiencing the largest 
voltage drop in the branch when R4’s resistance is large 
and conversely the smallest drop when its resistance is 
small. The common-mode voltage thusly measures about 
half the total input voltage (10 V / 2 = 5 V) for the for-
mer and about half of the voltage drop across V2 (5 V / 2 
= 2.5 V) when V3’s drop is negligible for the latter.

We can sum this up by describing the differential 
voltage as dependent on the ratio of the bridge resistors 
V2:V3. As Vd becomes negative when V3 > V2 and posi-
tive when  V3 < V2.

Meanwhile, the common-mode voltage depends on 
each independent voltage reading across a branch.

It’s now also worth verifying the experimental resis-
tances for each of the consitituent resistors R1, R2 and 
R3. We can do this by measuring their respective currents 
and voltage drops. Running 10 V through the circuit 
and leaving the potentiometer on its highest resistance:

V1 = 4.90 V I1 = 48.9 mA R1 = 100 Ω
V2 = 5.00 V I2 = 48.9 mA R2 = 102 Ω
V3 = 9.93 V I3 = 96 mA R3 = 103 Ω

giving us a maximum difference of 3% for R3. 

Figure source: 
“ECE 101 Laboratory 
One: Fundamental 
Circuit Theory Laws”



Non-linear resistances:
In the course of exploring resistors, it becomes nec-

essary to address superposition. In the simplest terms, 
superposition is the mathematical law that every change 
in voltage expects a correspondent change across the 
elements of a circuit For example, doubling 2VA = 2(VB 
+ VC) = 2 VB + 2 VC.

In order to explore this property, we ran differing 
voltages across each a resistor and bulb to measure their 
correspondent change in current and, thereby, conduc-
tance.

Figure Six depicts the data collected in Table One and 
clearly shows a linear relationship between the voltage 
and conductance of the resistor (red). A linear regression 
is fitted onto the data (green) which shows the pattern 
generated by the data and allows us to determine a good-
ness-of-fit coefficient, R2 = (0.997)^2 ≈ 1% disagree-
ment. This suggests the data is extremely comformative 
to its linear pattern.

Figure Seven depicts the data collected in Table Two 
and shows the relationship the conductance of the bulb 
shares with different voltages. As is immediately evident, 
the conductance varies much more widely with each 
change in voltage. Additionally, the relationship is nega-
tive -- meaning that each additional increment in voltage 
is met with a lower conductance.

As such, we can conclude that the resistor obeys su-
perposition due to its linearity in Figure Six whereas the 
bulb does not.

‘linear’

Figure Seven

Figure Six

The conductance of the resistor increases steadily with 
each increment in voltage.

The conductance of the bulb increases in smaller 
amounts for each additional increment in voltage.

Voltage (V) Current 
(mA)

Resistance 
(Ω)

Conductance 
m(1/ Ω)

1 28.7 34.8 28.7
2 40.0 50.0 20.0
3 49.1 61.1 16.4
4 56.8 70.4 14.2
5 63.0 79.4 12.6

Voltage (V) Current 
(mA)

Resistance 
(Ω)

Conductance 
m(1/ Ω)

1 9.47 106 9.47
2 18.9 106 9.48
3 28.5 105 9.50
4 38.0 105 3.80
5 47.6 105 9,52

Table One Table Two



Conlusion:
This report’s exploration of the different fundamental 

qualities and properties of circuits verified all its experi-
ments, to an error within 5%.

The first section dealt with Kirchoff’s Laws to deter-
mine voltages around a circuit’s loops and currents at 
each node. It verified the principle of conservation of 
power and used Ohm’s Law to determine the resistances 
of different resistors. Finally, it verified the Current & 
Voltage Divider theorems.

The second section used a Wheatstone bridge to 
compare single-ended, differential and common-mode 
voltages. It found that the differential voltage is deter-
mined by the ratio between the single-ended voltages, 
whereas the common-mode voltage depends moreso on 
each individual branch’s case.

Lastly, we used a bulb and a resistor to explore the 
property of superposition in a circuit and verified the 
linearity of a resistor and the nonlinearity of a bulb. Lin-
earity ultimately determines whether the element obeys 
superposition.


