
February 15, 2023 DataFrames Xavier Boluna

Contents

1 Pros & Cons 1
1.1 Eager vs. Lazy (Pandas vs. Polars/PySpark) 1
1.2 PySpark . 2

2 Methods 2
2.1 I/O examples . 2

2.1.1 Pandas . 2
2.1.2 Polars . 2
2.1.3 PySpark . 3

1 Pros & Cons
• Pandas: eager execution, tried & true (ideal for exploration

• Polars: lazy execution, optimizes speed

• PySpark: lazy execution, great for scale as operations can be run on multiple
computers

1.1 Eager vs. Lazy (Pandas vs. Polars/PySpark)

Similar to the execution vs. graphing with PyTorch vs. Tensorflow; instead of
executing each step on command, Lazy execution via Polars/PySpark will graph the
commands and execute on collection. The primary difference is that lazy execution
can take advantage of multiple cores (see example).

By default, Polars still executes eager, but one can use .lazy() in the command
chain to begin a graph and .collect() to trigger execution.

Pandas still has better functionality for data exploration, whereas Polars is prefer-
able for building data pipelines – especially when there are noticeable computation
chokepoints. PySpark creates a background instance, where jobs can be scaled across
multiple computers. As such, it doesn’t suffer the constraint that Pandas/Polars do
where read data must be <RAM size, since the entire dataset is loaded into memory.

import polars as pl

df = pl.read_csv('foo.csv')

(df.lazy() # begins graph

.filter(pl.col('col1') > 2) # equiv. to query

.groupby('col2') # Group cols

1

February 15, 2023 DataFrames Xavier Boluna

.agg(sum, mean) # ea. of the cols' aggs are computed by a diff core

.collect() # executes graph

)

1.2 PySpark

PySpark requires for an instance to be invoked and created. This instance runs in
the background, and its benefit is that it can be accessed by multiple computers.
Being able to scale up to multiple machines is the reason why PySpark is superior
in operating on large datasets.

from pyspark.sql import SparkSession

spark =

SparkSession.builder.master('local[1]').appName('example_name').getOrCreate()↪→

Thereafter, you can look at running jobs on localhost:4040/jobs.

2 Methods

This is a quick-lookup sheet for like operations in Pandas/Polars/PySpark.

2.1 I/O examples

2.1.1 Pandas

df = pd.read_csv() and df.to_csv()

2.1.2 Polars

pl.scan_csv() will implicitly graph subsequent actions such that the entire file need
not be loaded into memory for the action to occur. For example, if there are multiple
columns (col1, col2, ...) and we perform next a groupby by col1 only, only the col1
values are loaded into memory.

Operations after scan_ are implicitly lazy

df = pl.scan_parquet('example.parquet').groupby('col1').agg(

pl.col('col2').sum().alias('col2_sum'), # pl.col('') to access cols

pl.col('col1').mean().alias('col1_mean') # alias to name col

).collect() # Collect to execute graph

df.write_parquet('example.parquet')

2

February 15, 2023 DataFrames Xavier Boluna

2.1.3 PySpark

from pyspark.sql import SparkSession

Spark requires custom functions to be imported

from pyspark.sql.functions import avg, max, sum

Begin session

spark =

SparkSession.builder.master('local[1]').appName('example_name').getOrCreate()↪→

df_spark = spark.read.parquet('example.parquet')

df_spark_agg = df_spark.groupby(['col1', 'col2']).agg(

sum('col2').alias('col2_sum'), # note: sum <- pyspark fcns

avg('col1').alias('col1_avg') # alias to name col

)

Executes lazily, so nothing is done until we reach writing

df_spark_agg.write.mode('overwrite').parquet('example.parquet')

Once we execute this line, we can watch the job on localhost:4040/jobs

PySpark also takes sql queries as string, instead of scripting invocations.

from pyspark.sql import SparkSession

spark =

SparkSession.builder.master('local[1]').appName('example_name').getOrCreate()↪→

Create a temporary table which loads the file

spark.sql('CREATE TEMPORARY VIEW example_table USING parquet OPTIONS (path

\"example.parquet\")')↪→

query = """

SELECT col1,

sum(col2) AS col2_sum,

avg(col1) AS col1_avg

FROM example_table

GROUP BY col1

"""

spark.sql(query).write.mode('overwrite').parquet('temp_spark_sql.parquet')

3

	Pros & Cons
	Eager vs. Lazy (Pandas vs. Polars/PySpark)
	PySpark

	Methods
	I/O examples
	Pandas
	Polars
	PySpark

