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ABSTRACT

This report recreates the Cavendish experi-
ment, performed first by Henry Cavendish in 1797. 
The goal of the experiment is to measure the density 
of the Earth, which mathematically corresponds to 
the universal constant of gravitation. The apparatus 
used to do so leverages the mutual attraction of lead 
balls to oscillate a suspended boom by which the 
periodicity and angle of equilibrium allow for the 
derivation of the gravitational constant.

This report reproduces the experiment and, 
using modern electronics, deduce the gravitational 
constant.  We resolved a value of G = (6.859 ± 9.9) × 
10-11 m3kg−1s−2, which corresponds to a one-tailed p-val-
ue of 49.26% indicating significant agreement with the 
reference value provided by the NIST (see Appendix).

This report offers comparisons also to Caven-
dish's measurements of the density of the Earth and 
describes in detail the mathematical and method-
ological principles required to understand and re-
produce the experiment.
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Introduction

In 1797, Henry Cavendish set out on a quest that 
would have seemed impossible just a century before. 
Even today it still seems fantastical to say the Cavendish 
experiment attempeted to weigh the world.

Newton, about 110 years before, published his laws 
on gravitation Philosophiæ Naturalis Principia Mathemat-
ica, in which he proved the inverse square law of gravi-
tation Fg ~ 1/r2. He took a stab at measuring the relative 
masses of cosmic bodies among the solar system, but his 
attempts were only approximates.

Cavendish’s own experiment was the first to ac-
curately measure the density of Earth -- or in his time, 
the relative density with reference to water (Cavendish, 
1797). This was the first experiment to directly measure 
the gravitational attraction of two masses and it was 
from this bedrock that the concept of the gravitational 
constant came to light nearly another century later.

Cavendish’s apparatus consisted of two pairs of lead 
balls; one larger set suspended statically with another 
smaller pair suspended so they could twist about the 
center. The balls’ attraction to one another caused the 
smaller balls to twist until the string’s torsion counter-
balanced the gravitational attraction. 
Knowing the torsion quality of the 
string, and the separation of the balls 
from one another, Cavendish could 
effectively derive some version of the 
gravitational constant, and thereby 
the density of the Earth.

Cavendish’s final value was 
5.448 times that of water’s density, 
which we know today as 5.448 g/
cm3. Using the reverse of the equa-
tion derived in Theorem One, we 
calculate Cavendish’s gravitational 
constant to be 6.74 × 10−11 m3kg–

1s−2. The accepted value we will use 
is 6.67430 × 10−11 m3kg–1s−2; just 1% 
fractional difference, illustrating the 
accuracy of Cavendish’s measure-
ment.

The beautiful implication of 
this result is that the Earth’s total 
density measures roughly 80% less 
than his value. This was the first 
suggestion that the core of the Earth 
was composed of a different material 
than its mantle. With the help of 

Cavendish’s Apparatus

Taken from Cavendish’s Experiments to determine the Density of the Earth, this sche-
matic describes the design of his apparatus.

The larger pair of lead balls, labeled W, are suspended statically. The smaller lead balls 
are then placed an angle θ away are allowed to twist their central wire until the force of 
torsion from the wire counterbalances their gravitational attraction. 

From this, knowing the balls’ respective masses, the wire’s torsion coefficient and 
the balls resting separation from one another, it is possible to derive the gravitational 
constant.

seismology, scientists would learn that the Earth’s pro-
tective magnetic field is powered by a dynamic shell of 
molten iron at its core (Feynman, 1963).

In this paper, we repeat Cavendish’s experiment, 
using modernized methods and technology. We use a 
fundamentally similar apparatus to calculate the grav-
itational constant of Earth and thereby the density of 
Earth. We compare our derived value to that of accepted 
science today, and offer recommendations on how this 
experiment can be most accurately reproduced. Lastly, 
we explore the context and utility of the gravitational 
constant in Modern Physics to demonstrate its ubiquity 
and the impact of its discovery on history. 

This report is organized in the following sections, 
including data tables and bibliographical information 
placed in the Appendix:

Abstract ... 1
Introduction ... 2

Methods & Procedures ... 3
Error Analysis ... 5

Results ... 6
Discussion ... 8 
Appendix ... 9



Methods and Procedures

The star child of the Cavendish experiment is the 
boom. Just like the original apparatus built in 1797, 
our main box suspends on a wire a pair of lead balls in 
balance such that any perturbations, gravitational or oth-
erwise, induce a swivel about the center. A mirror, placed 
at the end of an opening in the box, allows the boom 
to reflect a laser shined through it. As the boom rotates, 
this boom will trace a path with its deflections which we 
can measure.

Another static arm is placed outside the box, tipped 
with a pair of lead balls. This is the arm which we move 
to induce gravitational attraction.

After moving this arm from one extreme to the 
other, the mutual attraction from the lead balls induces 
rotational oscillations in the internal boom arm. These 
oscillations, as in (b), deflect the laser onto a microm-
eter, with which we can visually see and measure the 
positional change over time. This allows us to measure 
the angle the boom makes with its normal by use of the 
methods outlined in Figure Two (next page). Over time, 
the boom arm equilibrates as the torsional force of the 
tungsten wire equals the gravitational attraction of the 
balls, and the system becomes static.

Our modern twist on the affair is the integration 
of an electrical component to read these oscillations as 
a change in potential over time. This allows us to re-
cord continuous, high-resolution data and trace out the 
damped waveform as it occurs in the box, as seen in (c).

In order to know how to perform our measure-
ments, we first need to know what information is needed 
to obtain the gravitational constant. The workings to do 
so are described in detail in the subsequent section, lo-
cated on the next page. The takeaways are the following:

T Period, obtained from the oscillation data
L The path length of the laser

x The deviation between equilibrium positions 
on the micrometer

R The distance between the lead balls’ centers

d The length of the boom arm from the rotation 
axis to the internal lead ball

M The mass of the external lead ball 
The latter three values are characteristic of our ap-

paratus and are provided to us by the Tel-Atomic manu-
al. They are housed within the fragile apparatus and are 
thereby difficult to independently verify. We assume that 
these values are minute enough that their contributions 
are outweighed by other error (see Error Analysis).

Figure One:
Computerized 
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(b) Overhead layout of 
the design table

(c) Oscilloscope

(a) A diagram of the Tel-Atomic Cavendish Apparatus provided 
for this experiment. This is a cross-section similat to Figure One 
in which the two lead balls are shown, balanced perfectly across a 
tungesten suspension wire. The oscillating boom (such that one or 
the other lead ball arm comes out of the page) twists that wire.

(b) A full overhead view of the experiment reveals many constitu-
ent components, including a laser which the internal boom deflects, 
changing the reading on the micrometer. The overall distance 
travelled by the laser is lengthened by the mirror so that the reading 
is more precise. The oscilloscope reads the electrical signal generated 
by the moving boom and allows us to take precise records.



Period (T) is measured by analyzing the oscillation 
data obtained with our oscilloscope. The software meth-
odology will be elaborated upon further in the results 
section.

The path length of the laser (L) was traced out with 
a thread and then subsequently measured; the error con-
tributed is the result of the ‘stretchiness’ of the string.

 Lastly, the change in position across the microm-
eter (x) can be measured as one would. Error is deter-
mined by comparing the deviation across the multiple 
measurements obtained for the same position.

Our methodology is therefore rather simple. 
Starting from one position in equilibrium, we record the 
micrometer position. This requires great precision and, 
as such, we took great lengths to record multiple differ-
ent datapoints for each equilibrium position. 

Hitting record on our oscilloscope data, we can 
then move the rotating arm to the opposite position 
in equilibrium. The oscilloscope will register sweeping 
paths which will be mirrored in the behavior of the 
laser on the micrometer. Eventually, the boom reaches 
equilibrium, and we record micrometer data and repeat 
the process as we return the boom arm to the the initial 
position. The oscilloscope recording all the while, we 
allow this second change to equilibrate and record the 
micrometer data there, too.

Derivation: Boom equilibrium angle and G
At first glance, measuring the gravitational constant 

on the order of 10-11 using masses in the order of half a 
kilogram seems miraculous. In fact, the relationship be-
tween them is such that we can derive it explicitly with 
few assumptions.

First, it is necessary to describe Newton's Law of 
Gravitation:

where the value r represents, in our case, the dis-
tance from each center of a lead ball to the other. Ap-
pendix A describes the motivation behind the center of 
a sphere being equivalent to a point mass of the same 
magnitude as the Shell Theorem, proven originally by 
Newton in Principia.

The torque on a boom is described by the equation:

wherein d describes the distance of the lead ball to 
the pivot arm and F describes whatever external force 
motivates the torque: in this case, Fg. We must remem-
ber, however, that there are two lead balls on each end of 
the boom, such that:

Over time, our boom equilibrates and rests at a 
deflection angle θd from the 'normal' position (if no 
other masses were present). The torsion constant of the 
tungsten wire K is thereby defined as:

It's useful now to define each mass as the large and 
small lead balls to which we give M and m respectively. 
We can solve for G using algebra:

For each equilibrium position, the boom advances 
θd twice. Additionally, for each θd, the boom deflects an 
angle 2θd. Figure Two describes this relationship such 
that the total distance traced by the laser from one equi-
librium position to the next, x, relates:

Now, K itself is related to the moment of inertia by 
the undamped resonant frequency, which is itself moti-
vated by the damped resonant frequency:

where b is the damping constant.
As such, we find the moment of intertia I which, 

for a small lead ball, involves:

where for each segment (boom arm and lead ball) 
i we get its moment of inertia, area and distance from 
the pivot arm. In our case, the ball of radius r and the 
aluminum arm of length lb and mass mb.
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Figure Two: The relationship between internal boom angle 
and deflected light

This simplified schematic (excluding the mirror) outlines the 
relationship by which the angle θd advances for the deflected laser is 
2θd. As such, considering laser travel x, we determine              .



As the mass of the beam mb = 0.0085 kg and is di-
vided by 12, and that r = 0.00672 m and is squared, we 
can make the presumption that these terms contribute 
relatively little to the moment of intertia. This allows us 
to simplify I to be:

We know that the damped oscillation frequency 
will correspond with our observed period and so, plug-
ging in I, we can deduce:

Which allows us to define a value for the torsional 
constant of the tungsten wire. Plugging this into the 
overall equation for the gravitational constant, we get:

wherein our calculations for the value of G will 
reference this equation.

A keen eye will notice that, because of our assump-
tions, the small lead mass m disappears. While techni-
cally under a more stringent derivation, this value would 
still be involved, the assumptions made when reducing 
the moment of intertia are perfectly sound and, there-
fore, this derivation is sufficently accurate.

One last derivation to make is that of the density of 
Earth in relationship with the gravitational constant. We 
obtain accepted values for the local gravitational accel-
eration g and the radius of the Earth REarth (NSSDC, 
2019) and treat them as constants.

Practical considerations
Methodologically, taking data for the Cavendish 

experiment is rather straightforward. There are, however, 
logistical elements that need attention to ensure that the 
measurement is accurately taken.

The first involves minimizing noise. With an 
instrument as sensitive as the Cavendish experiment, the 
potential for noise to distrupt measurements cannot be 
underrated. Our apparatus was sensitive to every minute 
bump, and sometimes even heavy footfall. In fact, from 
six complete datasets, only the last made it into this 

report because, for one reason or another, noise affected 
the data.

As such, it is beneficial not only to take extreme 
care, but to also be recording the oscilloscope data long 
before the experiment is performed. We often ran about 
10 minutes of static data before running the experiment. 
This is beneficial because it gives you an understanding 
of the magnitude of the ambient noise for that dataset 
and gives ample time for any additional factors to pres-
ent themselves. 

Corollary to this point, provide ample time be-
tween changes in the external rotating arm's position for 
equilibrium to be fully reached. Rotating the arm before 
this equilibrium is reached will contribute to the noise of 
the subsequent measurement.

Another crucial consideration is the micrometer 
measurements. In our apparatus, the laser travelled a 
length of nearly 5 meters. Over this distance, the width 
of the laser beam increases significantly -- so much so, 
that any measurement that 
gauges the 'middle' could 
deviate by more than half a 
millimeter, or up to 10%. 
For this reason, we chose 
multiple reference points to 
provide some average of the 
values with their statistical 
deviation representing the 
error in the average. The 
features we pegged our val-
ue to were the left, middle 
and center of the beam 
along with  first- and sec-
ond-order fringes produced 
by the light's interference 
with itself.

left middle right
1st fringe

2nd fringe

Figure Three: Measurement 
locations of the laser beam

The length of the path that the 
laser travels causes the beam to 
widen significantly. In order to ac-
count for its width, and therefore 
the variation in measurements it 
can cause, we take multiple mea-
surements from different locations 
to resolve an average value and 
statistical deviation.

Error Analysis

Some discussion must specifically be had over the 
choice of error, its propagation, and our standards for 
determining whether our measurement is in good agree-
ment with theory.

Firstly, with data we record ourselves, we obtain 
its variance σ2. Such is the case with our micrometer 
measurements x and our determination of the period T. 
For each of these, we take an average of the values we 
collect as our best value. We determine the error to be 
the square root of the set's variance, or its standard devi-
ation. Say some value q has a variance σq

2 -- its error will 



be σq = δq. We can represent this value as qi ± δqi. 
The data which we obtain from the Tel-Atomic 

manual is rated by the manufacturer of the apparatus. 
As mentioned earlier, the apparatus is sufficiently fragile 
that disassembling it simply to verify these values would 
be difficult (and likely unappreciated by our laboratory 
supervisors). As such, we take their given constants at 
face value. Adding uncertainty to the precision of the 
value proves mathematically inconsequential when we 
propagate error. For this reason, we choose simply to 
take the values as they are. The error we produce in our 
other measurements adequately drowns out these values' 
contributions.

When propagating error, we will use the rule of 
quadrature. For some function q(x1,x2,...,xn) with associ-
ated errors δxi, the error for that function is:

For each equation, we repeat this process so that we 
arrive on a final value for the gravitational constant, with 
associated error δGexperimental.

We source our 'accepted' scientific value for the 
gravitational constant from Comittee on Data for 
Science and Technology's internationally recommended 
values, which are backed at the very least by the United 
States' scientific community (NIST, 2018). Their rec-
ommended value Greference = (6.67430 ± 0.00015) x 10-11 
m3kg-1s-2.

The weight σ for our Gaussian Distribution will 
then be the error propagated from our Gexp and Gref by 
the same methods mentioned above.

Looking at Figure Eight, we see the equation for 
the Gaussian distribution, which defines its own error 
parameter σ and a center for the function, μ. We want to 
center our distribution at x = 0 so we choose μ = 0.

The coefficient of the Gaussian Distribution nor-
malizes the distribution, such that the integral over its 
full bounds (-∞,∞) resolves to one. For this reason, the 
p-value suggests a percent likelihood that a given value is 
correctly obtained.

Figure Four: 
The Gaussian 
Distribution

The Gaussian Distribution takes in our combined uncertainty to 
produce a distribution which evaluates the probabilistically ‘best’ value. 
With this, we can calculate the area under the curve from our data 
point (which will be the deviation from the accepted value) and find 
a p-value. This value informs our evaluation of the accuracy of experi-
mental results.

Results

Having gone into depth with our methodology, the 
derivation of our equations and the context by which we 
will evaluate our results, we turn towards the collection 
of data and analysis of the results. 

Finding the period of oscillation

Having exported our dataset from the oscilloscope, 
we can plot it fully, as in Figure Five. The value in seeing 
this set fully laid is the immediate sense of the pattern 
and the damping factor. As the system continues to settle 
down, its period remains roughly the same while its 
amplitude and axis of oscillations converge on a single 
potential.

The oscilloscope converts the boom data to an elec-
trical potential which is amplified by the signal amplifier 
seen in Figure One (b). As such, the most relevant infor-
mation we can glean has purely to do with time.

Figure Five: The Raw Dataset, plotted

Taking the data recorded from the oscilloscope, we can plot the full 
waveform produced by our boom through time. We have independent-
ly verified the exact times which we moved the rotating arm with the 
spikes in oscillation.

position 
one

position 
two



We can extrapolate from this dataset the period of 
oscillation rather easily. Using a quick corner-searching 
methods, we can highlight all of the points at which 
there appears to be a local extremum.

Splitting these into two different wave packets, we 
get the first (upper) waveform in Figure Six (a) and the 
second (lower) waveform in (b).

As is noticeable, our algorithm for searching the 
extremum is imperfect, and picks up many more ex-
trema as noise overtakes the waveform in later stages. As 
such, we identify by hand the discernible first 10 period 
measurements for both the minima (dashed line) and 
maxima (dotted) of the waveform.

We can compute an average period and statistical 
deviation for each of these sets for both waveforms. As 
the period of oscillation should be dependent on the 
moment of inertia and therefore the physical apparatus, 
we can assume that the period will be the same for every 
trial. For this reason, we average all the sets and find 
their standard deviation to be T = 213.9 ± 5.2 seconds.  

Finding the angle of deflection

The second crucial component we need is the 
deflection angle θd. This, as we discussed earlier, requires 
the length of the laser L and the path traced by the laser 
on the micrometer x.

Having measured L with a string, we can measure 
it piecewise with a meter stick and, accounting for the 
minimum and maximum stretchiness of the string, get 
the values 3,623 and 3,619 millimeters. We can average 
these and consider the boundaries as the error, such that 
L = 3,621 ± 2 millimeters.

We can then take the measurements of x from equi-
librium to position one to equilibrium in position two. 
This table references the positions in Figure Three. 
Location Equilibrium 

position one
Equilibrium 
position two

Total travel 
(mm)

Left 3.986 -3.991 7.977
Middle 2.433 -5.461 7.984
Right 1.181 -6.715 7.896
1st fringe 0.646 -7.063 7.709
2nd fringe -0.026 -7.896 7.87

Taking the average value and error of the total trav-
el, we get x = 7.869 ± 0.088 millimeters.

We use these values to solve the equation for θd and 
propagate error such that θd = (5.433 ± 0.786) × 10-4. 
This is the most sensitive part of the analysis; while the 
error seems high, it is not entirely unexpected.

Figure Six: Periodicity analysis on both wave packets

(a) Analysis of first waveform

(b) Analysis of second waveform

Analyzing these waveforms' maxima and minima is assisted by an 
algorithm that looks for corners in the graph. The extrema are then 
handpicked -- ten points per side; twenty per graph -- in order to calcu-
late the average difference and the standard deviation between them.

The minima are traced with the upper dashed line while the maxima 
are traced with the dotted line.

Determining the torsional constant

Our next step is to obtain the torsional constant of 
our tungesten wire, defined earlier as:

The Tel-Atomic manual gives us a mass for the 
small balls m = 14.7 grams and its distance from the 
rotation axis d = 66.56 millimeters. 

Given our obtained values and propagating for 
error, we obtain a torsional constant K = (112.4 ± 0.87) 
× 10-10 m2 kg s

-2.w



Determining the universal gravitational constant

Our last step is to calculate, finally, the gravitational 
constant of the universe. We utilize the equation:

The Tel-Atomic manual gives us the mass of the 
large lead ball M = 917 grams.

Using this value, and those we have obtained be-
fore, we resolve Gexp = (6.859 ± 9.9) × 10-11 m3kg−1s−2.

We now need to create a Gaussian distribution for 
this experimental value with respect to the reference val-
ue we obtained earlier as Greference = (6.67430 ± 0.00015) 
x 10-11 m3kg-1s-2.

Propagating their combined error into a weight 
for the distribution and centering it about zero, we get 
Figure Seven.

As shown by the red vertical lines, our experimental 
value's deviation from the reference is minimal com-
pared to the width of the distribution.

We take the integral between the positive deviation 
and infinity to resolve a one-tailed value p = 49.26%.

This is extremely good, suggesting our measure-
ment is probabilistically very near the best possible value. 
This adds support to our theory and methodology.

Figure Seven: Gaussian distribution to determine accuracy 
of Gexperimental with respect to Greference

Discussion

The goal of this venture was to recreate Cavendish's 
experiment by the use of modernized means. By this 
standard, I would consider this experiment a success.

We derived the equations equivalent to what Cav-
endish would have worked with through his discovery 
nearly two centuries ago. Using an apparatus fundamen-
tally similar to his, but with electronic elements which 
allows us to plot with precision the oscillation of the 
boom, we calculated the gravitational constant within 
good agreement with the current accepted scientific 
value and theory.

It is important to note, however, that the agreement 
of this value is dependent on the error associated with it. 
For our comparison, the error in our experimental value 
drowned out the error in the reference value, meaning 
that the high level of agreement reflects moreso the 
likelihood that a measurement with our error could have 
been accurately measured.

Cavendish, in 1797, specifically calculated the 
specific density -- or density relative to water. Keeping 
in mind his original value of 5.448 g/cm3, we calculate 
the density of Earth using our new experimental value 

for the gravitational constant. Our experimental density 
resolves to be ρexperimental  = 5.354 g/cm3.

While in Cavendish's time, the gravitational con-
stant had not yet been synthesized in the form we recog-
nize it as, his scientific work represented a big step in the 
history of understanding gravity and the Earth. Further, 
more accurate measurements of the gravitational con-
stant have relied on methods founded by Cavendish's 
apparatus and leverage identical principles.

Future reproductions of this experiment could 
benefit from the stringent methodology described in the 
Methods section. The main contributors of error in our 
experiment were the length of the laser path L and the 
oscillation period T. The former could benefit from a less 
stretchy string so that the measurement varies less. The 
latter would require less noise and more data points to 
narrow down the variation.

It's worth noting that Cavendish's experiment 
was performed in a sealed room with a larger apparatus 
and larger masses than ours (Encylopaedia Britannica). 
Though he didnt have the benefit of modern technology, 
he did have more resources and more space. Our lab was 
ventilated, populated with others including ourselves 
and was situated on a metal (vibrationally conductive) 
table. As such, our measurement environment was con-
ducive to some noise, noise which was demonstrated in 
the data as multiple peaks in an extremum or a difficulty 
in resolving further extrema as the total amplitude of the 
wave decreased (which is why we only took 20 measure-
ments of extrema per wave).

This distribution describes the deviation from the reference value for 
our experimental value of the gravitational constant. The Gaussian Dis-
tribution is a normalized distribution which consider a null hypothesis 
for our value and attempts to evaluate its probabilistic agreement. 
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The implications of Cavendish's discovery are 
grand. First, of course, was the discrepancy between 
the density of the Earth's mantle and its overall density. 
This revelation belied the Earth's liquid iron core. This 
discovery ,and further seismological developments to 
discover the solid 'cool' core within it, linked the Earth's 
magnetic field to the its dynamic core. 

Mars has no magnetic field and is therefore unable 
to retain an atmostphere or protect its surface from solar 
radiation. The perspective we glean from Earth's dynam-
ic core points to the possibility that Mars has a less-liqui-
fied core and, in its past, had perhaps a more dynamic 
core, an intrinsic magnetic field and a healthier atmo-
sphere (NASA, 2016). This increases the chance that life 
once existed in Mars' pasts, and heralds a warning for 
the challenges Earth could face should its core cool to a 
certain point in the distant future.

Cavendish's experiment reaches further than Earth 
science itself, with the gravitational constant being ubiq-
uitous in our search for understanding of the natural 
forces of the universe. 

A worthwhile exercise which appreciates the sen-
sitivity of the experiment is to calculate the ratio of the 
electrostatic force to the gravitational force. We can take 
the case of two bare protons separated by a distance r. 
Knowing their masses and charge are the same, we can 
consider:

Plugging in with the real values of proton charge 
and mass, the Coulombic constant and our gravitational 
constant, we get a ratio of 1.26 × 1028. The electrostatic 
force is demonstrably more powerful than the gravita-
tional force.

In essence, though the particulars of the Cavendish 
experiment could be considered mundane, in fact it is 
the perspective through which we see nature which is 
fundamentally important. The theory of gravitation and 
the search for a gravitational constant ask questions that 
are deeply intrinsic to human experience. What caus-
es objects to fall and celestial objects to move in such 
patterns? What lies beneath the Earth under my feet? 
How does the universe create itself? What are its rules; 
its book of instructions?

Perhaps most humbling of all is that the very same 
gravitation we measured between two balls less than a 
few centimeters wide governs the entire, churning cos-
mos, from nebulae to neutron stars.
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The Shell Theorem

Proven in Newton's Principia in the early 16th 
century, the Shell Theorem proves that, in terms of grav-
itational attraction, a spherical object of uniform density 
can be considered as a point mass at the center of that 
sphere.

Though Newton proved this theorem using explicit 
geometry, in fact the easiest way to arrive at this theorem 
is by using Gauss' Law.

Gauss' Law for gravity describes:

where M is a uniformly dense mass inside a sphere 
of radius r and g is its gravitational field.

We can describe this closed integral as the dot 
product of a the gravitational acceleration as a factor of 
distance r and the normal unit vector:

Take note that as the dot product with the normal 
unit vector requires exclusively the outward-pointing 
vectors, and g(r) is dependent exclusively on the distance 
r from the center of the sphere, we can consider g(r) to 
be normal and independent of dS. As such, we can solve 
the integral of the closed sphere which resolves the area 
of the sphere, 4πR2:

Then, taking the original proposition of Gauss' 
Law and equating it to our solved integral:

Solving for g(r), we get:

This is the law of gravitation for a single body, i.e. 
the gravitational acceleration towards a mass m. Just as 
F=ma, we can use the gravitational acceleration to solve 
the force of gravitational attraction between any two 
masses.

This proves that the theorem is true for any spheri-
cal surface in which a uniformly dense mass is enclosed. 
As such, the Shell Theorem is proven.

r

Cross-section of a sphere of 
uniform mass density m

by which g is 
a function of r

This cross-section of a sphere visualizes the 
normal vector and the radius r. The function g(r) 
describes the gravitational acceleration as a func-
tion of radius and acts exclusively as a magnitude 
normal to the sphere's surface.


