
February 8, 2023 Python Xavier Boluna

Contents

1 Data Structures 1
1.0.1 G4G external cheatsheet . 2

1.1 Datatypes & memory allocation . 2
1.1.1 Checking size . 2
1.1.2 Schemes for list and tuple . 2

2 Misc. Tips 2
2.1 filter(function, list) . 2

3 Interpreter 3
3.1 compile() . 3
3.2 Global Interpreter Lock . 3

1 Data Structures

For any data type, one can see all built-in functions using dir(list).

list.insert() del Iterate in/Equality Get list[i] len() Pop @ end .pop(-1)

O(n) O(n) O(n) O(n) O(1) O(1) O(1)

Table 1: List

Insert/Del are costliest at beginning of array, because they shift all of the re-
maining elements. Appending can be costly if preallocated memory becomes full
(i.e. extending).

Tuples are the same but are immutable.
Use a list as a stack (FIFO): push/pop → .append()/.pop(). Use a list as a

queue (LIFO): enqueue/dequeue → .append()/.pop(0). collections.deque() is O(1)
for .append()/.pop()/.popleft() compared to O(n) for native list.

Get dict[key] Construct del Iterate
O(1) O(1) O(1) O(n)

Table 2: Dict

An (unordered) dict is a hashmap. When iterating, don’t need to call .keys();
just use for key in dict: ...

1

February 8, 2023 Python Xavier Boluna

a in set(A) A-B A \& A (intersect ∩) A|B (union ∪)
O(1) O(len(A)) O(min([len(A), len(B)])) O(n = len(A) + len(B))

Table 3: Set

Strings are immutable arrays of chars; changing a string creates a copy.
Bytearrays are mutable sequences of integers in 0 ≤ x < 256; each element

representing an 8-bit byte in memory. bytearray((1,1,3,5,8))

1.0.1 G4G external cheatsheet

Geeks for Geeks cheatsheet

1.1 Datatypes & memory allocation

1.1.1 Checking size

Check easily with sys package: sys.getsizeof(object) (value is in bytes)

1.1.2 Schemes for list and tuple

For a an immutable tuple, every additional element (homogeneous) is allocated the
same amount of space. With an int, that would be 8 bytes.

For a mutable list, additional appended elements will increase the allocated mem-
ory whenever the length of the list exceeds the number of elements 2n + 1. For ex-
ample, more memory will be allocated at the 20 + 1, 22 + 1, 23 + 1, etc. thresholds,
corresponding to the 1, 5, 9, etc. locations.

Because a tuple has an immutable length, len(tuple) <= len(list), with the dif-
ference greatest just after memory is allocated to the list.

2 Misc. Tips

2.1 filter(function, list)

Use filter to mask arrays.

Given some list

numbers = range(1,1000)

Have a filtering function

def isPrime(int) -> bool:

2

https://www.geeksforgeeks.org/python-data-structures/

February 8, 2023 Python Xavier Boluna

return

Filter will initially return an object to save memory

all_primes = filter(isPrime, list)

Convert it to a list to print

list(all_primes)

3 Interpreter

3.1 compile()

Useful for symbolic programming, in which each line adds an element to a graph
which is executed at the END of a set of instructions. In this way, variables do not
hold values until they are executed. Python instructions are imperative, meaning
that each line executes & variables updated at each instruction.

• String/bytestring i.e. open(’script.py’, ’r’).read()

• Filename from which the code was read; if not read, doesn’t matter

• Mode: ’exec’, ’eval’ or ’single’
– eval – single expression i.e. x=50; compile('x==50', '', 'eval')

– exec – block of a code that has Python statements, class and functions
and so on i.e. file read

– single – single interactive statement i.e. x=50; compile('x', '', 'single')

3.2 Global Interpreter Lock

Python variables which are referenced in multiple multithreaded processes are subject
to being ’locked’ by one thread or another, to prevent the variable being modified
by both at the same time. The instructions must be bound for the CPU.

For some CPU intensive function

def countdown(n):

while n>0:

n-=1

COUNT = int(5e5)

Single thread

countdown(COUNT)

Multithread

from threading import Thread

t1 = Thread(target=countdown, args = (COUNT/2))

3

February 8, 2023 Python Xavier Boluna

t2 = Thread(target=countdown, args = (COUNT/2))

t1.start()

t2.start()

t1.join()

t2.join()

Both will perform equally fast (use time.time())

Use multiprocessing instead

Each process will get its own interpreter and memory space

from multiprocessing import Pool

pool = Pool(processes = 2)

r1 = pool.apply_async(countdown, [COUNT//2])

r2 = pool.apply_async(countdown, [COUNT//2])

pool.close()

pool.join()

4

	Data Structures
	G4G external cheatsheet
	Datatypes & memory allocation
	Checking size
	Schemes for pythonlist and pythontuple

	Misc. Tips
	pythonfilter(function, list)

	Interpreter
	pythoncompile()
	Global Interpreter Lock

