1 Problem 1

1D particle in potential $V(\hat{x}) = Usin(2\pi \hat{x}/a)$ for U > 0. Particle is on ring of length L = Na for N integer, and satisfies periodic boundary condition $\Psi(x) = \Psi(x + L)$. **a.** $\langle x | p \rangle = \frac{e^{ipx/\hbar}}{\sqrt{L}}$.

$$e^{\frac{i}{\hbar}(xp)} = e^{\frac{i}{\hbar}p(x+L)}$$

$$e^{ixp} = e^{ixp+iLp}$$

$$e^{iLp} = 1 \rightarrow p = \frac{2\pi}{L}n \text{ for n integer.}$$
(1)

b. Need to find $< p|V(\hat{x})|p' >$. Re-express $V(\hat{x})$ as

$$V(\hat{x}) = U[\frac{e^{2\pi i\hat{x}/a} - e^{2\pi i\hat{x}/a}}{2i}] \text{ and plug in as}$$

$$< p|V(\hat{x})|p> = \frac{U}{2i}[< p|e^{2\pi i\hat{x}/a}|p> - < p|e^{2\pi i\hat{x}/a}|p>]$$
For each, $< p|e^{\pm 2\pi i\hat{x}/a}|p'> = \int_{0}^{L} \frac{e^{-ipx}}{\sqrt{L}} e^{\pm 2\pi i\hat{x}/a} \frac{e^{ip'x}}{\sqrt{L}} dx = \frac{1}{L} \int_{0}^{L} e^{-ix(p-p'\mp 2\pi/a)} dx$
(2)

Digressing to the possible solutions to this integral:

If
$$p - p' = \pm \frac{2\pi}{a} \to \frac{1}{L} \int_{0}^{L} e^{0} = L/L = 1$$

else $p - p' \neq \pm \frac{2\pi}{a} \to \frac{1}{L} [\frac{e^{-ix(p-p' \mp \frac{2\pi}{1})}}{-i(p-p' \mp \frac{2\pi}{a})}]|_{0}^{L} = \frac{i}{L} [\frac{e^{iL(-p+p' \pm \frac{2\pi}{a})} - 1}{(p-p' \mp \frac{2\pi}{a})}]$
wherein from a. $p = \frac{2\pi n}{L} = \frac{2\pi n}{Na}$ therefore $\frac{i}{L} [\frac{e^{i2\pi(-n+n' \pm N)} - 1}{i\frac{2\pi n}{LNa}}] = 0$ (3)
Recalling that $e^{i2\pi N} = 1$
As such, $\begin{cases} p - p' = \pm \frac{2\pi}{a} \to 1\\ p - p' \neq \pm \frac{2\pi}{a} \to 0 \end{cases}$

We enforce the first case $p - p' = \pm \frac{2\pi}{a}$ such that

$$< p|V(\hat{x})|p'> = \frac{U}{2i}[< p|e^{2\pi i\hat{x}/a}|p> - < p|e^{2\pi i\hat{x}/a}|p>] = \frac{U}{2i}[\delta_{p-p',\frac{2\pi}{a}} - \delta_{p-p',\frac{-2\pi}{a}}] \quad (4)$$

c. Derive $|\Psi\rangle$ and reduce it to $|p = 0\rangle$ when $U \to 0$ to first order in U. By definition provided in lecture, the wavefcn is approximated to O(V) as below

$$|\Psi \rangle \approx |0\rangle + \frac{-Q}{E_0 - H^0} V(\hat{x}) |\Psi^0\rangle$$

= $|0\rangle + \frac{-\sum_{p'=0} |p'\rangle \langle p'|V|0\rangle}{E_0 - \frac{{p'}^2}{2m}}$ (5)

From last, substitute $\sum_{p'} |p'| > \langle p'|V|0 \rangle = \frac{U}{2i} [|\frac{2\pi\hbar}{a} \rangle - |-\frac{2\pi\hbar}{a} \rangle]$ so that $E_0 = 0$ while $H^0 = \frac{p^2}{2m} = \frac{(2\pi\hbar/a)^2}{2m} = \frac{\hbar^2}{2ma^2}$.

$$\begin{split} |\Psi \rangle &\approx |0 \rangle + \frac{1}{\frac{p'^2}{2m}} \frac{U}{2i} [|\frac{2\pi\hbar}{a} \rangle - |-\frac{2\pi\hbar}{a} \rangle] \\ &= |0 \rangle + \frac{Uma^2 i}{\hbar^2} [|\frac{2\pi\hbar}{a} \rangle - |-\frac{2\pi\hbar}{a} \rangle] \end{split}$$
(6)

Which we can verify reduces to $|0\rangle$ as $U \to 0$.

d. To verify as a block wave, we need to express as plane wave \times periodic function f(x) = f(x+a).

Reexpress the results of 1c as below

$$< x|\Psi> = < x|0> + C < x|\frac{2\pi\hbar}{a}> - C < x|\frac{-2\pi\hbar}{a}> \approx e^{0} + Cie^{2\pi ix} - Cie^{-2\pi ix}$$

= 1 + 2iCsin(2\pi x) (7)

Which is periodic due to the sine function and has a plane wave block attached where e^{ikx} as $k \to 0$.

e.
$$p = \pm \frac{\hbar\pi}{a}$$
 therefore the subspace is $\left[\frac{-\hbar\pi}{a}, \frac{\hbar\pi}{a}\right]$ with elements $< \pm \frac{\hbar\pi}{a}|V| \pm \frac{\hbar\pi}{a} >$.

$$V = \begin{bmatrix} \langle \frac{\hbar\pi}{a} | V | \frac{\hbar\pi}{a} \rangle & \langle -\frac{\hbar\pi}{a} | V | \frac{\hbar\pi}{a} \rangle \\ \langle \frac{\hbar\pi}{a} | V | -\frac{\hbar\pi}{a} \rangle & \langle -\frac{\hbar\pi}{a} | V | -\frac{\hbar\pi}{a} \rangle \end{bmatrix} = \frac{U}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
(8)

Therefore eigenvalues are $\pm \frac{U}{2}$ and the eigenvector is $\begin{bmatrix} 1 \\ \pm i \end{bmatrix}$. The resulting wave equation takes the form $\Psi >= |\frac{\hbar\pi}{a} > \pm i| - \frac{\hbar\pi}{a} >$ which, normalized, becomes

$$|\Psi_{\pm}\rangle = \frac{1}{\sqrt{2}} \left[\left| \frac{\hbar\pi}{a} > \pm i \right| \frac{-\hbar\pi}{a} > \right] \text{ with eigenenergies } \frac{p^2}{2m} \pm \frac{U}{2} = \frac{\hbar^2 \pi^2}{2ma^2} \pm \frac{U}{2} \quad (9)$$

2 Problem 2

a. We want $\vec{A} = 0$ therefore we impose $\vec{E} = -\partial_z \phi \hat{z} = E \hat{z}$ where we choose E in \hat{z} . Therefore the scalar potential is $\phi = -Ez$ and the Stark correction is

$$\delta H_S = -e\phi = eEz \tag{10}$$

wrt uniform electric field \vec{E} and elementary charge e.

$$H = H_0 + \delta H_S = \frac{p^2}{2m} - \frac{e^2}{r} + eEz$$
(11)

b. Firstly, we know $E_0 = -13.6eV$. The first-order energy is $E_1 = \langle \phi_{100} | H_S | \phi_{100} \rangle = eE \langle 100 | z | 100 \rangle$ where the expectation of of an odd fcn is 0, therefore $E_1 = 0$. The second-order energy is $E_2 = \sum_{nlm \neq 100} \frac{|\langle \phi_{nlm} | H_S | \phi_{100} \rangle|}{E_0 - \frac{-13.6eV}{n^2}}$. Therefore,

$$E \approx -13.6eV + \sum_{nlm \neq 100} \frac{e^2 E^2 n^2}{-13.6eV(1-n^2)} | \langle \phi_{nlm} | z | \phi_{100} \rangle |^2$$
(12)

c. Firstly, we can say that $\hat{R}(\pi)$ behaves functionally like \hat{P} in that $\hat{R}(\pi)\hat{R}(\pi) = I = \hat{P}\hat{P}$ where I is identity. As such, we can confirm our earlier conclusion for $E_1 = 0$ with an alternative proof that

$$< nlm|z|100 > = < nlm|\hat{P}\hat{P}z\hat{P}\hat{P}|100 > = (< nlm|\hat{P})(\hat{P}z\hat{P})(\hat{P}|100 >) = ((-1)^{l} < nlm|)(-z)((-1)^{0}|100 >) = (-1)^{l+1} < nlm|z|100 >$$
(13)
$$(-1)^{l+1} = 1 \therefore l \text{ is odd to be nonzero} < 100|z|100 > = 0$$

As such, the first-order energy dies and the second-order energy is restricted to $nlm \neq 100$, l odd.

Next, we recognize $\hat{R}^{-1}\hat{R} = I$ and choose a rotation $\psi = 2\pi \mathbb{I}$ by which $R(\psi) = e^{-i\hat{L}_z\psi}$.

As such,

$$< nlm|z|100 >= (< nlm|\hat{R}^{-1})(\hat{R}z\hat{R}^{-1})(\hat{R}|100 >)$$

$$= (< nlm|e^{i\hat{L}_{z}\psi})(z)(e^{-i\hat{L}_{z}\psi}|100 >)$$
Via the theorem described in class, $\Psi_{nlm}(\hat{R}r) = e^{im\psi}\Psi_{nlm}(r)$

$$satisfies \ e^{iL_{z}\psi}|nlm >= e^{im\psi}|nlm >$$

$$\therefore < nlm|z|100 >= (< nlm|e^{i\hat{L}_{z}\psi})(z)(e^{-i\hat{L}_{z}\psi}|100 >) =< nlm|e^{im\psi}|z|e^{0}|100 >$$

$$< nlm|z|100 >= e^{im\psi} < nlm|z|100 >$$

Wherein with $e^{im(2\pi\mathbb{I})} = 1$, the only way which this statement is true is if m is zero. The second-order energy becomes a sum over $nlm \neq 100$, l odd and m=0.

d. $H_z = \frac{|e|}{m_e c} \vec{S} \cdot \vec{B}$ for n=1 is $|nlm \rangle \rightarrow |100 \rangle \otimes |\uparrow\rangle$ and $|100 \rangle \otimes |\downarrow\rangle$. We choose $\vec{B} = B \cdot \hat{z}$ such that $\vec{S} \rightarrow \hat{S}_z$ so that each $|\uparrow\rangle$, $|\downarrow\rangle$ eigenvector has eigenvalue $+\frac{h}{2}, -\frac{h}{2}$ for \hat{S}_z such that the eigenenergies are $\frac{|e|B\hbar}{2m_e c}, \frac{|e|B\hbar}{2m_e c}$ and we add the ground state order -13.6eV to each.